Questions   
Sort: 
 #1
avatar+9481 
0

This is a funny lookin pyramid! The formula for the volume of this pyramid is the same as if "P" were above the center of the base:  volume = (1/3)(area of base)(height)

This helped me verify that.

 

 

Draw AC.

Now look at triangle ABC.  From the Pythagorean theorem....

 

AC2   =   22 + 32   =   4 + 9   =   13

 

AC is in the same plane as AD and AB, so PA is perpendicular to AC.

Look at triangle PAC.  From the Pythagorean theorem again....

 

AC2 + PA2  =  52

13  +  PA2  =  25

PA2  =  12

PA  =  √12

PA  =  2√3

 

And....

volume of pyramid  = (1/3)(area of base)(height)

                               =  (1/3)(  2 * 3  )( PA )

                               =  (1/3)(6)(2√3)

                               =  4√3     cubic units

 

*edit*

 

I just remembered how my math teacher explained that the volume of an oblique cylinder is the same as the volume of a right cylinder (with the same height and base).

 

Imagine a stack of pennies. If you line the stack straight up, it is a right cylinder. And if you lean the stack over, it is oblique. But the height, area of the base, and the volume stays the same.

 

And in this case, imagine a stack of square pieces of cardboard that get smaller as you go higher. You can stack the squares up to form a right pyramid, or you can slide them to look like the pyramid in this problem. The volume stays the same. smiley

Oct 10, 2017
Oct 9, 2017

1 Online Users