With gamma and the beta function
Formula: \(\displaystyle \int \limits_{0}^{\pi/2} \cos^{2u-1}(x)\cdot \sin^{2v-1}(x) \;dx = \frac12 \cdot B(u,v), \qquad \text{Re } u>0, \quad \text{Re } v>0\)
Where \(B(x,y) = \dfrac{\Gamma(x) \cdot \Gamma(y)}{\Gamma(x+y)}, \qquad \text{Re } u>0, \quad \text{Re } v>0\)
4)\(\displaystyle \int \limits_{0}^{\pi/2} \cos^{15}(x)\;dx\)
\(\begin{array}{rr} \begin{array}{rr} \displaystyle \int \limits_{0}^{\pi/2} \cos^{15}(x)\cdot \;dx = \frac12 \cdot B(u,v) \\ \end{array}\\ \begin{array}{r|r} 2u-1 = 15 & 2v-1 = 0 \\ 2u = 16 & 2v = 1\\ u = 8 & v = \frac12 \\ \end{array} \end{array}\)
\(\begin{array}{rcll} \displaystyle \int \limits_{0}^{\pi/2} \cos^{15}(x)\cdot \;dx &=& \frac12 \cdot B(8,\frac12) \\ &=& \displaystyle \frac12 \cdot \dfrac{\Gamma(8) \cdot \Gamma(\frac12)}{\Gamma(8+\frac12)} \quad & | \quad \Gamma(\frac12) = \sqrt{\pi} \\\\ &=& \displaystyle \frac12 \cdot \dfrac{\Gamma(8) \cdot \sqrt{\pi} }{\Gamma(8+\frac12)} \quad & | \quad \Gamma(8) = 7! \\\\ &=& \displaystyle \frac12 \cdot \dfrac{7! \cdot \sqrt{\pi} }{\Gamma(8+\frac12)} \quad & | \quad \displaystyle \Gamma(8+\frac12) = \frac{(2\cdot 8)!}{8!4^8}\sqrt{\pi} \\\\ &=& \displaystyle \frac12 \cdot \dfrac{7! \cdot \sqrt{\pi} }{\frac{(2\cdot 8)!}{8!4^8}\sqrt{\pi}} \\\\ &=& \displaystyle \frac12 \cdot \dfrac{7! 8! 4^8}{16!} \\\\ &=& \displaystyle \frac12 \cdot \dfrac{1\cdot 2\cdot 3\cdot 4\cdot 5\cdot 6\cdot 7\cdot 4^8}{ 9 \cdot 10 \cdot 11\cdot 12 \cdot 13 \cdot 14\cdot 15\cdot 16} \\\\ &=& \displaystyle \dfrac{165150720 }{518918400 } \\\\ &=& \displaystyle \dfrac{2048\cdot 80640 }{6435\cdot 80640 } \\\\ &=& \displaystyle \dfrac{2048 }{6435 } \\ \end{array}\)
5) \(\displaystyle \int \limits_{0}^{\pi/2} \sin^{13}(x)\;dx\)
\(\begin{array}{rr} \begin{array}{rr} \displaystyle \int \limits_{0}^{\pi/2} \sin^{13}(x)\;dx = \frac12 \cdot B(u,v) \\ \end{array}\\ \begin{array}{r|r} 2u-1 = 0 & 2v-1 = 13 \\ 2u = 1 & 2v = 14 \\ u = \frac12 & v = 7 \\ \end{array} \end{array}\)
\(\begin{array}{rcll} \displaystyle \int \limits_{0}^{\pi/2} \sin^{13}(x)\;dx &=& \frac12 \cdot B(\frac12,7) \\ &=& \displaystyle \frac12 \cdot \dfrac{\Gamma(\frac12) \cdot \Gamma(7)}{\Gamma(\frac12+7)} \quad & | \quad \Gamma(\frac12) = \sqrt{\pi} \\\\ &=& \displaystyle \frac12 \cdot \dfrac{\sqrt{\pi} \cdot \Gamma(7)}{\Gamma(7+\frac12)} \quad & | \quad \Gamma(7) = 6! \\\\ &=& \displaystyle \frac12 \cdot \dfrac{\sqrt{\pi} \cdot 6!}{\Gamma(7+\frac12)} \quad & | \quad \displaystyle \Gamma(7+\frac12) = \frac{(2\cdot 7)!}{7!4^7}\sqrt{\pi} \\\\ &=& \displaystyle \frac12 \cdot \dfrac{\sqrt{\pi} \cdot 6!}{\frac{(2\cdot 7)!}{7!4^7}\sqrt{\pi}} \\\\ &=& \displaystyle \frac12 \cdot \dfrac{6! 7! 4^7}{14!} \\\\ &=& \displaystyle \frac12 \cdot \dfrac{1\cdot 2\cdot 3\cdot 4\cdot 5\cdot 6 \cdot 4^7}{ 8\cdot 9 \cdot 10 \cdot 11\cdot 12 \cdot 13 \cdot 14} \\\\ &=& \displaystyle \dfrac{5898240 }{17297280 } \\\\ &=& \displaystyle \dfrac{1024\cdot 5760 }{3003\cdot 5760 } \\\\ &=& \displaystyle \dfrac{1024 }{3003 } \\ \end{array}\)