Questions   
Sort: 
 #1
avatar+118690 
+2
Feb 21, 2018
 #8
avatar+118690 
+2

I am quite sure EP will be correct but I will take a look:

 

Let b and c be constants such that the quadratic \(-2x^2 +bx +c\)   

has roots \(3+\sqrt{5}\)  and \(3-\sqrt{5}\).

Find the vertex of the graph of the equation   

\(y=-2x^2 + bx + c\)

 

The roots of a quadratic   \( ax^2+bx+c\)  is the answers to   \( ax^2+bx+c=0\)

And the answers to this are given by the quadratic equation

 

\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\\ x=\frac{-b}{2a}\pm\frac{\sqrt{b^2-4ac}}{2a}=3\pm\sqrt5 \)

 

This means that  \(x=\frac{-b}{2a}\) = 3      must be exactly halfway between the two roots.!!

 

So the axis of symmetry is x=3 and the vertex lies on this line so the x value of the vertex is 3

The y value will be    \(y=-2*3^2+bx+c = -18+3b+c \)

 

This is fine but you need to find the vleu of b and c       frown

 

From the equation above I can see that 

\(\frac{-b}{2a}=3 \qquad and \qquad \pm\frac{\sqrt{b^2-4ac}}{2a}=\pm\sqrt5\\ a=-2\qquad so\\ \frac{-b}{-4}=3 \qquad and \qquad \pm\frac{\sqrt{b^2+8c}}{-4}=\pm\sqrt5\\ b=12 \qquad and \qquad \pm\frac{\sqrt{b^2+8c}}{4}=\pm\sqrt5\\ b=12 \qquad and \qquad \frac{b^2+8c}{16}=5\\ b=12 \qquad and \qquad b^2+8c=80\\ b=12 \qquad and \qquad 144+8c=80\\ b=12 \qquad and \qquad 18+c=10\\ b=12 \qquad and \qquad c=-8\\\)

 

so

 

\(y= -18+3b+c\\ y= -18+3*12+-8\\ y=-18+36-8\\ y=10 \)

 

So the vertex is   (3,10)

 

Which is exactly the same answer has given you. He has done it a number of different ways but stlill all the answers are the same!!

 

Thanks EP :)

Feb 21, 2018

1 Online Users