Questions   
Sort: 
 #11
avatar+2487 
+4

There is a “Chicken McNugget’s Theorem,” but there should not be one.

The real reason is the “cute” name “Chicken McNugget’s Theorem.”  If it’s “cute” then more will remember it and use it. Cuteness in general, and anthropomorphic cuteness in particular, is the byword for educating children and adults too.  We might not understand it unless a blòódy dancing McNugget explains it to us.indecision

 

According to the Wikipedia article the “Chicken McNugget’s Theorem” is a “special case” of the Frobenius coin problem. The supposed reason it is special is that boxes of chicken nuggets were sold in units of 6, 9, and 20.”  

 

Now, let’s put on our “thinking caps,” and consider these cute numbers: 6, 9, and 20.

 

The “thinking caps” work well: There is nothing special about these numbers—it’s just one set of an infinite number of sets that have a Frobenius number.  

 

 

GA

May 6, 2018
 #4
avatar+2487 
+2

Solving two variables in a single equation is usually a trial and error process. However, in this case, you can easily narrow the process to a few guesses using logic.

 

The (i) and (j) values are integers; there are no fractional or decimal components in them.

 

Because the sum of integers is very low, it reasonable to assume the (i,,j) exponents are low—less than 10.

 

To solve, start by assuming a central value (between 1 and 10) for (j), and then use logarithms to isolate for (i).  

Because (2) is one of the factors, its resolution will be its multiples 2,4,8,16,32,64,128,256, ... ect. Seeing one of these indicates you’ve found the solution set.

 

\((( 2^i-1)*\dfrac{(3^j - 1)}{(2)} = 600 \leftarrow \tiny \text{ The (2) and (1) are common to all equations.}\\ ( 2^i) = \dfrac{1200}{(3^j - 1)} +1\leftarrow \tiny \text{ Leave it in this form to streamline the solution search.}\\ \text {Example: assume (j) = 6 and solve for (i)}\\ ( 2^i) = \dfrac{1200}{(3^6 - 1)} +1\\ ( 2^i) = \dfrac{150}{91} +1\\ Log_2( 2^i) = Log_2 \left( \dfrac {150}{91} +1\right) \small \text{ Note the fraction; This is not the solution.}\\ \text {Example: assume (j) = 5 and solve for (i)}\\ ( 2^i) = \dfrac{1200}{(5^5 - 1)} +1\\ ( 2^i) = \dfrac{600}{121} +1\\ Log_2( 2^i) = Log_2 \left( \dfrac {600}{121} +1\right) \small \text{ Again, note the fraction; This is not the solution.}\\ \text {Example: assume (j) = 4 and solve for (i)}\\ ( 2^i) = \dfrac{1200}{(5^4 - 1)} +1\\ ( 2^i) = 15 +1\\ Log_2( 2^i) = Log_2 \left( 16\right) \small \text{ Note the integer 16, corresponding to i=4; This is the solution.}\\ \)

 

The solution is j=4 and i=4.  Subtract (1) from each and use these as the exponents for the primes 2, and 3 to find the number (N) for which 600 is the sum of its divisors.

 

There are similar techniques for (N) that have three or more unique prime factors.

 

 

GA

Edit: Corrected to indicate base (2) log.

May 6, 2018
May 5, 2018
 #4
avatar+220 
+2
May 5, 2018
 #1
avatar+129647 
+1

1.   16(x - 3)  =  (y - 1)^2 

 

The vertex of this parabola is at  ( 3, 1)

This parabola opens to the right

In the form    4p(x - 3)  = (y - k)^2......the focus is  ( 3 + p, 1)   

We can solve for p as  4p  =16  ⇒   p  = 4

So....the focus  is  ( 3 + 4, 1)   =  (7,1)

The dirctrix lies 4 units to the left of the vertex and is given by    x  = ( 3 - p )  =   (3  - 4 )   =    -1

Here's a graph :  https://www.desmos.com/calculator/iwubncnnan

 

2.  y  = -1/6 x^2 + 7x  - 80     we need to complete the square on  x

 

y  = (-1/6)  [ x^2- 42x + 480 ]     

 

Take 1/2 of 42  = 21....square it  = 441....add and subtract it within the brackets

 

y   =    (-1/6)  [x^2 - 42x + 441 + 480  - 441 ]     factor the frist three terms....simplify the rest

 

y  = (-1/6) [  (x - 21)^2  + 39 ]

 

y = (-1/6)(x - 21)^2  - 39/6

 

y  = (-1/6)(x - 21)^2  - 13/2       add 13/2 to both sides

 

(y + 13/2) =  (-1/6)(x - 21)^2        multiply through  by -6

 

-6(y + 13/2)  = (x - 21)^2

 

Because of the presence of a "-"   in front of the "6"......this parabola turns downward

The vertex is  ( 21, - 13/2)

The focus is  given by ( 21 , -13/2  + p )

And we can find  p as    .....  4p  = -6   ⇒  p  = -6/4  = -3/2

So....the  focus  is  (21, -13/2 - 3/2)   = ( 21 , -16/2)  = (21, -8)

The directerix is given as    y  = (-13/2 - p)   = ( -13/2 - (-3/2) )   = ( -13/2 + 3/2)  = -10/2  = -5

Here's a graph :  https://www.desmos.com/calculator/g9zfw92yos

 

 

cool cool cool

May 5, 2018
 #1
avatar+129647 
+1

1.  y  = -1/4x^2 + 4x  - 19

 

The x coordinate of the vertex  is given by   -4 / (2 * -1/4)  =  -4 / (-1/2)  =   -4 * -2    =  8

And the y coordinate is given  by :

-1/4 (8)^2  + 4(8)  - 19  =

-16  + 32   - 19

-3

 

So....the vertex  is  (8, -3)

 

Here's a graph : https://www.desmos.com/calculator/z76eahtb61

 

2. The center of the circle  is  ( 1, 4)   and the radius  is 8

 

So we have

 

(x - 1) ^2   + ( y - 4)^2   = 8^2        expand and simplify

 

x^2 - 2x + 1  + y^2  - 8y + 16  = 64

 

x^2 + y^2  - 2x - 8y  + 17  = 64       subtract 64 from both sides

 

x^2  + y^2  -2x - 8y - 47   =  0 

 

 

 

3.  We have    y   =  1/8 x^2 + 4x + 20

 

We want to complete the square  on x

 

y = (1/8)  (x^2  + 32x + 160)

 

Take  1/2 of 32  = 16....square it  = 256....add and subtract it within the parentheses

 

y  = (1/8)  (x^2 + 32x  + 256   + 160   - 256)       factor the first three terms, simplify the last two

 

y = (1/8) [ (x + 16)^2  - 96 ]       apply the  1/8   over both terms in the parentheses

 

y  = (1/8) (x + 16)^2 - 12

 

(y + 12)  = (1/8)(x + 16)^2     multiply both sides by 8

 

8( y + 12)  = (x + 16)^2

 

The vertex  is at  (-16, -12)

 

In the form

 

4p ( y - k)  = (x - h)^2

 

4p  = 8

 

So....p  = 2

 

And the focus is given by

 

(-16 ,  -12 + p)   =    (-16, -12 + 2)   =   (-16, -10)

 

Here's the graph  :  https://www.desmos.com/calculator/cgsvcjy0ny

 

 

 

cool cool cool

May 5, 2018

0 Online Users