Questions   
Sort: 
 #5
avatar+26367 
+1

Determine all positive integers
\(k \le 2000 \)  
for which
\(x^4+k\)
can be factored into two distinct trinomial factors with integer coefficients.

 

\(\text{All four roots of $x^4+k$ are complex numbers, because $k$ is a positive integer} \\ \text{The complex numbers are conjugation in pairs :} \)

 

\(\begin{array}{|rcll|} \hline x^4+k &=& (x-x_1)(x-x_2)(x-x_3)(x-x_4) \quad | \quad x_1,x_2,x_3,x_4 \in C \\ && x_1 = a+bi \\ && x_2 = a-bi \\ && x_3 = u+vi \\ && x_4 = u-vi \\ x^4+k &=& \Big(x-(a+bi)\Big) \Big(x-(a-bi)\Big) \Big(x-(u+vi)\Big) \Big(x-(u-vi)\Big) \\ &=& \Big((x-a)-bi\Big) \Big((x-a)+bi)\Big) \Big((x-u)-vi)\Big) \Big((x-u)+vi)\Big) \\ &=& \Big((x-a)^2-b^2i^2\Big) \Big((x-u)^2-v^2i^2)\Big) \quad | \quad i^2=-1\\ &=& \Big((x-a)^2+b^2\Big) \Big((x-u)^2+v^2)\Big) \\ &=& \Big(x^2-2ax+(a^2+b^2)\Big) \Big(x^2-2ux +(u^2+v^2)\Big) \quad | \quad \text{trinomial factors}\\ &=& x^4-2ux^3+(u^2+v^2)x^2-2ax^3+4aux^2-2ax(u^2+v^2) \\ && +(a^2+b^2)x^2-2u(a^2+b^2)x+(a^2+b^2)(u^2+v^2) \\ &=& x^4 -x^3\underbrace{(2u+2a)}_{=0} +x^2\underbrace{(u^2+v^2+a^2+b^2+4au)}_{=0} \\ && -x\underbrace{\Big(2a(u^2+v^2)+2u(a^2+b^2)\Big)}_{=0} +\underbrace{(a^2+b^2)(u^2+v^2)}_{=k} \\ && \begin{array}{|lrcll|} \hline 1. & 2u+2a &=& 0 \quad & | \quad : 2 \\ & u+a &=& 0 \\ & \mathbf{u} &\mathbf{=}& \mathbf{-a} \quad & | \quad \text{or} \quad \mathbf{u^2=a^2} \\ \hline \end{array}\\ &=& x^4 +x^2\underbrace{(a^2+v^2+a^2+b^2-4a^2)}_{=0} \\ && -x\underbrace{\Big(2a(a^2+v^2)-2a(a^2+b^2)\Big)}_{=0} +\underbrace{(a^2+b^2)(a^2+v^2)}_{=k} \\ &=& x^4 +x^2\underbrace{(v^2+b^2-2a^2)}_{=0} -x\underbrace{(2av^2-2ab^2)}_{=0} +\underbrace{(a^2+b^2)(a^2+v^2)}_{=k} \\ && \begin{array}{|lrcll|} \hline 2. & 2av^2-2ab^2 &=& 0 \quad & | \quad : 2a \\ & v^2-b^2 &=& 0 \\ & \mathbf{v^2 } &\mathbf{=}& \mathbf{b^2 } \\ \hline \end{array}\\ &=& x^4 +x^2\underbrace{(b^2+b^2-2a^2)}_{=0} +\underbrace{(a^2+b^2)(a^2+b^2)}_{=k} \\ &=& x^4 +x^2\underbrace{(2b^2-2a^2)}_{=0} +\underbrace{(a^2+b^2)(a^2+b^2)}_{=k} \\ && \begin{array}{|lrcll|} \hline 3. & 2b^2-2a^2 &=& 0 \quad & | \quad : 2 \\ & b^2-a^2 &=& 0 \\ & \mathbf{b^2 } &\mathbf{=}& \mathbf{a^2 } \\ \hline \end{array}\\ &=& x^4 +\underbrace{(a^2+a^2)(a^2+a^2)}_{=k} \\ &=& x^4 +\underbrace{(2a^2)(2a^2)}_{=k} \\ &=& x^4 +\underbrace{4a^4}_{=k} \\ \hline && \huge{k=4a^4} \\ \hline \end{array}\)

 

\(\text{trinomial factors:}\)

\(\begin{array}{|rcll|} \hline && \Big(x^2-2ax+(a^2+b^2)\Big) \Big(x^2-2ux +(u^2+v^2)\Big) \\ && \boxed{ b^2 = a^2, \quad u^2 = a^2, \quad v^2=b^2=a^2, \quad u = -a } \\ &=& ( x^2-2ax+ 2a^2)(x^2+2ax + 2a^2) \\ \hline \end{array} \)

 

Solutions:

\(\begin{array}{|r|r|c|c|} \hline a \in N &k= 4a^4 & k \le 2000 & ( x^2-2ax+ 2a^2)(x^2+2ax + 2a^2) \\ \hline 1 & 4 & \checkmark & ( x^2-2x+ 2)(x^2+2x + 2) \\ 2 & 64 & \checkmark & ( x^2-4x+ 8)(x^2+4x + 8) \\ 3 & 324 & \checkmark & ( x^2-6x+ 18)(x^2+6x + 18) \\ 4 & 1024 & \checkmark & ( x^2-8x+ 32)(x^2+8x + 32) \\ 5 & 2500 & \gt 2000 \text{ no solution } \\ \ldots & \ldots & \gt 2000 \text{ no solution } \\ \hline \end{array}\)

 

All positive integers k  are 1,2,3,4

 

laugh

Jul 27, 2018
Jul 26, 2018

4 Online Users

avatar