Questions   
Sort: 
 #1
avatar+19 
0
Dec 11, 2018
 #1
avatar+258 
+1
Dec 11, 2018
 #2
avatar+505 
0
Dec 11, 2018
 #4
avatar+26396 
+10

7. 

As shown in the diagram, points B and D are on different sides of line AC. 

We know that Angle B=2*Angle D=60 degrees and that AC=4sqrt(3). 

What is the distance between the circumcenters of Triangle ABC and Triangle ADC?

 

line segments:

\(\text{Let $AC =4\sqrt{3}$ } \\ \text{Let $AG=GC =2\sqrt{3}$ } \\ \text{Let $AE=EC =r$ } \\ \text{Let $AF=FC =R$ } \\ \text{Let $FE = EG+GF $ } \)

The distance between the circumcenters of Triangle ABC and Triangle ADC \(= FE\)

 

angle:

\(\text{Let $\angle ABC = 60^{\circ} $ } \\ \text{Let $\angle ADC = \frac{\angle ABC}{2} = 30^{\circ} $ } \\ \text{Let $\angle AEC = 2*\angle ABC = 120^{\circ} $ } \\ \text{Let $\angle AFC = 2*\angle ADC = 60^{\circ} $ } \)

 

\(\mathbf{EG = \ ?}\)

\(\begin{array}{|rcll|} \hline AC^2 &=& 2r^2\Big(1-\cos(120^{\circ})\Big) \quad \text{$\cos$-rule} \quad | \quad \cos(120)^{\circ} = -0.5 \\ (4\sqrt{3})^2 &=& 2r^2(1+0.5) \\ 48 &=& 2r^2(1.5) \\ 24 &=& r^2(1.5) \\ r^2 &=& 16 \\\\ AG^2 + EG^2 &=& r^2 \\ (2\sqrt{3})^2 + EG^2 &=& 16 \\ 12 + EG^2 &=& 16 \\ EG^2 &=& 4 \\ \mathbf{EG} & \mathbf{=}& \mathbf{2} \\ \hline \end{array}\)

 

\(\mathbf{GF = \ ?}\)

\(\begin{array}{|rcll|} \hline AC^2 &=& 2R^2\Big(1-\cos(60^{\circ})\Big) \quad \text{$\cos$-rule} \quad | \quad \cos(60)^{\circ} = 0.5 \\ (4\sqrt{3})^2 &=& 2R^2(1-0.5) \\ 48 &=& 2R^2(0.5) \\ 24 &=& R^2(0.5) \\ R^2 &=& 48 \\\\ AG^2 + GF^2 &=& R^2 \\ (2\sqrt{3})^2 + GF^2 &=& 48 \\ 12 + GF^2 &=& 48 \\ GF^2 &=& 36 \\ \mathbf{GF} & \mathbf{=}& \mathbf{6} \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline FE &=& EG+GF \\ &=& 2+6 \\ \mathbf{FE} & \mathbf{=} & \mathbf{8} \\ \hline \end{array}\)

 

The distance between the circumcenters of Triangle ABC and Triangle ADC is 8

 

laugh

Dec 11, 2018
 #1
avatar+6250 
0
Dec 11, 2018

3 Online Users

avatar