Questions   
Sort: 
 #2
avatar+505 
0
Dec 12, 2018
 #8
avatar+26396 
+9

General Solution - Trigonometry

Sin Ø  - Sin 2Ø = Sin 4Ø - Sin 3Ø

 

\(\begin{array}{ rcl } \sin(\phi) - \sin(2\phi) &=& \sin(4\phi) - \sin(3\phi) \\ &\text{or} & \\ \sin(3\phi)+\sin(\phi) &=& \sin(4\phi) + \sin(2\phi) \\ \end{array} \)

 

Formula:

\(\begin{array}{|rcll|} \hline \underbrace{\sin(3\phi)+\sin(\phi)}_{=2\sin(2\phi)\cos(\phi)} &=& \underbrace{\sin(4\phi) + \sin(2\phi)}_{=2\sin(3\phi)\cos(\phi)} \\\\ 2\sin(2\phi)\cos(\phi) &=& 2\sin(3\phi)\cos(\phi) \\\\ \sin(2\phi)\cos(\phi) &=& \sin(3\phi)\cos(\phi) \\\\ \sin(3\phi)\cos(\phi) -\sin(2\phi)\cos(\phi) &=& 0 \\\\ \cos(\phi)\Big(\sin(3\phi)-\sin(2\phi) \Big) &=& 0 \\ \hline \end{array} \)

 

Formula:

\(\begin{array}{|rcll|} \hline \cos(\phi)\Big(\underbrace{\sin(3\phi)-\sin(2\phi)}_{=2\cos(\frac52\phi)\sin(\frac12\phi)} \Big) &=& 0 \\\\ \cos(\phi)2\cos(\frac52\phi)\sin(\frac12\phi) &=& 0 \quad | \quad :2 \\\\ \large{\mathbf{\cos(\phi)\cos(\frac52\phi)\sin(\frac12\phi)} }& \large{\mathbf{=}} & \large{\mathbf{0}} \\ \hline \end{array}\)

 

General Solution:

\(\begin{array}{|lrcll|} \hline 1. & \cos(\phi) &=& 0 \\ & \phi &=& 2n\pi\pm\arccos(0) \\ & \phi &=& 2n\pi\pm \frac{\pi}{2} \quad \Rightarrow \quad \mathbf{\phi = (2n-1)\frac{\pi}{2}} \\ \hline \end{array}\)

\(\begin{array}{|lrcll|} \hline 2. & \cos(\frac52\phi) &=& 0 \\ & \frac52\phi &=& 2n\pi\pm\arccos(0) \\ & \frac52\phi &=& 2n\pi\pm \frac{\pi}{2}\quad | \quad \cdot \frac25 \\ & \phi &=& \frac45 n\pi\pm \frac{\pi}{5} \quad \Rightarrow \quad \mathbf{\phi = (2n-1)\frac{\pi}{5}} \\ \hline \end{array}\)

\(\begin{array}{|lrcll|} \hline 3. & \sin(\frac12\phi) &=& 0 \\ & \frac12\phi &=& n\pi+(-1)^n \arcsin(0) \\ & \frac12\phi &=& n\pi+(-1)^n \pi \quad | \quad \cdot 2 \\ & \phi &=& 2n\pi+(-1)^n 2\pi \quad \Rightarrow \quad \mathbf{\phi = 2n\pi} \\ \hline \end{array} \)

 

laugh

Dec 12, 2018
 #1
avatar+37158 
0
Dec 12, 2018
 #1
avatar+12530 
0
Dec 12, 2018
 #3
avatar+6250 
+1
Dec 12, 2018
 #6
avatar+26396 
+9
Dec 12, 2018
 #4
avatar+26396 
+9

Hello CPhill,

"how was that method derived":

 

1.)

This is the Legendre Theorem from 1808:

Source: Legendre's Theorem - The Prime Factorization of Factorials https://www.cut-the-knot.org/blue/LegendresTheorem.shtml

 

 

2.)

There is a second nice Theorem from Legendre to solve this problem:

Source: Legendre's Theorem - The Prime Factorization of Factorials https://www.cut-the-knot.org/blue/LegendresTheorem.shtml

 

Example:

The prime factorization of 109!  So \(n = 109\)

What is the exponent of 3?  So \(p = 3\)
\(\begin{array}{|rcll|} \hline 109 \text{ in base } 3: \\ 109_{10} = 11001_3 \\ \hline \end{array} \)

 

The exponent of 3 is:

\(\begin{array}{|rcll|} \hline \text{The exponent of $3$} &=& \dfrac{\overbrace{109}^{=n}-(\overbrace{1+1+0+0+1}^{\text{sum of all the digits in the expansion of $n$ in base $p$}})}{\underbrace{3}_{=p}-1} \\ \text{The exponent of $3$} &=& \dfrac{ 109 - 3}{2} \\\\ \text{The exponent of $3$} &=& \dfrac{ 106}{2} \\\\ \mathbf{\text{The exponent of $3$}} & \mathbf{=} & \mathbf{53} \\ \hline \end{array}\)

 

laugh

Dec 12, 2018

3 Online Users

avatar