Questions   
Sort: 
 #6
avatar+476 
+2
Dec 20, 2018
 #5
avatar+476 
+2
Dec 20, 2018
 #4
avatar+26396 
+8

Limits
I was just reviewing my calc book when I stumbled across this problem.

\(\large { \lim \limits_{x \to \infty} \dfrac{\sqrt{x^4-10x}-\sqrt{x^4-5x^2+7}}{5} }\)

 

\(\begin{array}{|rcll|} \hline &&\mathbf{ \lim \limits_{x \to \infty} \dfrac{\sqrt{x^4-10x}-\sqrt{x^4-5x^2+7}}{5} } \\\\ &=&\dfrac15 \cdot \lim \limits_{x \to \infty} \left( \sqrt{x^4-10x}-\sqrt{x^4-5x^2+7} \right) \\\\ &=&\dfrac15 \cdot \lim \limits_{x \to \infty} \left( \sqrt{x^4-10x}-\sqrt{x^4-5x^2+7} \right) \dfrac{\left( \sqrt{x^4-10x}+\sqrt{x^4-5x^2+7} \right)}{\left( \sqrt{x^4-10x}+\sqrt{x^4-5x^2+7} \right)} \\\\ &=&\dfrac15 \cdot \lim \limits_{x \to \infty} \left( \dfrac{ x^4-10x-(x^4-5x^2+7)} { \sqrt{x^4-10x}+\sqrt{x^4-5x^2+7} } \right) \\\\ &=&\dfrac15 \cdot \lim \limits_{x \to \infty} \left( \dfrac{ 5x^2-10x-7} { \sqrt{x^4-10x}+\sqrt{x^4-5x^2+7} } \right) \cdot \dfrac{x^2}{x^2} \\\\ &=&\dfrac15 \cdot \lim \limits_{x \to \infty} \left( \dfrac{ \frac{5x^2-10x-7} {x^2} } { \frac{\sqrt{x^4-10x}+\sqrt{x^4-5x^2+7}} {x^2} } \right) \\\\ &=&\dfrac15 \cdot \lim \limits_{x \to \infty} \left( \dfrac{ \frac{5x^2-10x-7} {x^2} } { \sqrt{\frac{x^4-10x} {x^4} }+\sqrt{ \frac{x^4-5x^2+7} {x^4} } } \right) \\\\ &=&\dfrac15 \cdot \lim \limits_{x \to \infty} \left( \dfrac{ 5-\frac{10}{x}-\frac{7}{x^2} } { \sqrt{1-\frac{10}{x^3} } + \sqrt{1-\frac{5}{x^2}+\frac{7}{x^4}} } \right) \\\\ &=&\dfrac15 \cdot \left( \dfrac{ 5-0-0 } { \sqrt{1-0 } + \sqrt{1-0+0} } \right) \\\\ &=&\dfrac15 \cdot \left( \dfrac{ 5 } { 1 + 1 } \right) \\\\ &=&\dfrac15 \cdot \dfrac{ 5 } {2 } \\\\ &\mathbf{=}&\mathbf{\dfrac12} \\ \hline \end{array}\)

 

 

laugh

Dec 20, 2018

1 Online Users