Loading [MathJax]/extensions/TeX/mathchoice.js
 
  Questions   
Sort: 
 #3
avatar+118704 
+3

\lim_{x\longrightarrow\infty}\frac{\sqrt{x^4-10x}-\sqrt{x^4-5x^2+7}}{5}

 

limxx410xx45x2+75=limx(x410xx45x2+7)(x410x+x45x2+7)5(x410x+x45x2+7)=limxx410x(x45x2+7)5(x410x+x45x2+7)=limx5x210x75(x410x+x45x2+7)=limx5x210x75(x410x)(1+x45x2+7x410x)

 

=15×limx5x210x7(x410x)×limx1(1+x45x2+7x410x)

NOW I will look at each of these limits seperately.

 

limx5x210x7(x410x)=limx(5x210x7)2x410xexpanding gives=limx25x4100x3+30x2+140x+49x410xDividing top and bottom by x^4 we get=limx25100x+30x2+140x3+49x4110x3=25=5-------------------------------------------------------

 

limx1(1+x45x2+7x410x) =1limx(1+x45x2+7x410x)=1limx(x45x2+7x410x)+1=1limx(x45x2+7x410x)+1=1limx(15x2+7x4110x3)+1=1limx(15x2+7x4110x3)+1=12

-------------------------------------------------------------

 

SO what do we have now.

 

limxx410xx45x2+75=15×5×12=12

.
Dec 20, 2018
 #1
avatar+6251 
+1
Dec 20, 2018
 #4
avatar
0
Dec 20, 2018
 #1
avatar+130474 
0
Dec 20, 2018
 #1
avatar+130474 
+1
Dec 20, 2018
 #2
avatar+847 
+1
Dec 20, 2018

4 Online Users

avatar
avatar