Questions   
Sort: 
 #3
avatar+9476 
+3

We can use the law of sines:

 

\(\begin{array}{rcl} \frac{\sin A}{a}&\,=\,&\frac{\sin B}{b}\\~\\ \frac{\sin(50°)}{3}&\,=\,&\frac{\sin B}{2}\\~\\ 2\cdot\frac{\sin(50°)}{3}&\,=\,&\sin B\\~\\ \frac{2}{3}\sin(50°)&=\,&\sin B \end{array} \\ \ \\~\\ B\approx30.71°\quad\text{or}\quad B\approx149.29° \)

 

There are infinitely many values of B that produce the same sin value, but we only want to consider those

that are in the interval  (0, 180°)  because no angle in a triangle can have a measure outside that interval.

 

This is how we find those two solutions:

 

\(B\,=\,\arcsin(\frac{2}{3}\sin(50°))\qquad\text{or}\qquad B\,=\,180°-\arcsin(\frac{2}{3}\sin(50°))\)

 

But in this case,  B ≈ 149.29° can't be a solution because we already have an angle that is 50°,  and

 

149.29° + 50°  >  180°

 

So we know  B ≈ 30.71°  is the only solution for this problem. So there is only one possible triangle.

 

Now we can find the measure of angle  C .

 

C  =  180° - A - B  ≈  180° - 50° - 30.71°  ≈  99.29°

 

All we are missing is the length of side c. We can find it using the law of cosines.

 

c2  =  a2 + b2 - 2ab cos C

c2  ≈  32 + 22 - 2(3)(2) cos( 99.29° )

c2  ≈  13 - 12 cos( 99.29° )                  c  is a length, so take the positive sqrt of both sides

c  ≈  √[ 13 - 12 cos( 99.29° ) ]              Plug this into a calculator

c  ≈  3.865

 

Now we have found:

B  ≈  30.71°

C  ≈  99.29°

c  ≈  3.865

May 16, 2019
 #3
avatar+33653 
+2
May 16, 2019
 #2
avatar+1995 
+1
May 16, 2019

0 Online Users