Questions   
Sort: 
 #1
avatar+26367 
+4

Let triangle ABC have side lengths AB=13, AC=14, and BC=15.

There are two circles located inside angle BAC which are tangent to rays AB, AC, and segment BC.

Compute the distance between the centers of these two circles.

 

\(\begin{array}{|rcll|} \hline s &=& \dfrac{a+b+c}{2} \\ s &=& \dfrac{13+15+14}{2} \\ \mathbf{s} &=& \mathbf{ 21 } \\ \hline \end{array} \)

\(\begin{array}{|rcll|} \hline r &=& \sqrt{\dfrac{(s-a)(s-b)(s-c)}{s}} \\ &=& \sqrt{\dfrac{(21-13)(21-15)(21-14)}{21}} \\ &=& \sqrt{\dfrac{(8)(6)(7)}{21}} \\ &=& \sqrt{\dfrac{336}{21}} \\ &=& \sqrt{16} \\ \mathbf{r} &=& \mathbf{ 4 } \\ \hline \end{array}\)

\(\begin{array}{|rcll|} \hline r_b &=& \sqrt{\dfrac{s(s-a)(s-c)}{s-b}} \\ &=& \sqrt{\dfrac{21(21-13)(21-14)}{21-15}} \\ &=& \sqrt{\dfrac{21(8)(7)}{6}} \\ &=& \sqrt{ 196 } \\ \mathbf{r_b} &=& \mathbf{ 14 } \\ \hline \end{array}\)

 

\(\mathbf{AU=\ ?}\)

\(\begin{array}{|rcll|} \hline AU &=& AV \\ AU+AV &=& (a+BU)+(c+CV) \\ &=& a+c+BU+CV \quad | \quad BU = BU',\ CV=CV' \\ &=& a+c+BU'+CV' \quad | \quad BU'+CV' = b \\ &=& a+c+ b \\ AU+ AV&=& 2s \quad | \quad AV = AU \\ 2AU &=& 2s \\ \mathbf{ AU } &=& \mathbf{ s } \\ \hline \end{array} \)

 

\(\begin{array}{|rcll|} \hline x &=& \sqrt{\Big(s-(s-b)\Big)^2 + (r_b-r)^2 } \\ &=& \sqrt{b^2 + (14-4)^2 } \\ &=& \sqrt{15^2 + 10^2 } \\ &=& \sqrt{(3*5)^2 + (2*5)^2 } \\ &=& \sqrt{5^2*(3^2+2^2) } \\ &=& \sqrt{5^2*13 } \\ \mathbf{x } &=& \mathbf{ 5\sqrt{ 13 } } \\ x &\approx& 18 \\ \hline \end{array} \)

 

The distance between the centers of these two circles is \(\mathbf{\approx 18}\)

 

laugh

May 27, 2019
 #1
avatar+9466 
+3

A.

volume of rectangular prism  =  length * width * height

volume of rectangular prism  =  20 cm * 9 cm * 8 cm

volume of rectangular prism  =  1440 cm2

 

B.

volume of circular cylinder  =  area of circular base * height

volume of circular cylinder  =  π * radius2 * height

 

radius  =  diameter / 2  =  10/2 cm  =  5 cm

 

volume of circular cylinder  =  π * (5 cm)2 * 15 cm

volume of circular cylinder  =  π * 25 * 15 cm3

volume of circular cylinder  =  375π  cm3

volume of circular cylinder  ≈  1178  cm3        (That is to the nearest cubic centimeter.)

 

C.

volume of remaining wax   =   volume of rectangular prism - volume of circular cylinder

volume of remaining wax   =   1440 cm3  -  375π  cm3

volume of remaining wax   =   ( 1440 - 375π ) cm3

 

volume of cube  =  volume of remaining wax  =  ( 1440 - 375π ) cm3

 

volume of cube  =  side * side * side  =  ( side )3

 

                                                        Equate both representations of volume of cube.

( side )3  =  ( 1440 - 375π ) cm3

                                                        Take the cube root of both sides of the equation.

side  =  \(\sqrt[3]{1440-375\pi}\)  cm

                                                        Plug  \(\sqrt[3]{1440-375\pi}\)  into a calculator.

side  ≈  6 cm

May 27, 2019
 #1
avatar
+1

 

Label the drawing along with me.

 

Label the bottom left vertex of the triangle A

Label the top vertex of the triangle B

Label the bottom right vertex of the triangle C

 

Label the point of tangency on the right D

Bisect the base of the triangle and label the point E - this is also the center of the circle

 

A line from the center of a circle to the point of tangency of a line is a right angle

So the little triangle CDE is a right triangle

 

The large triangle ABC is almost an equilateral triangle.  If it were equilateral, angle DCE would be 60o and DEC 30o 

The sides are slightly longer than the base, so DCE is slightly larger than 60o but for now let's call it 60o - we'll fix it later.

 

Calling DCE 60o makes DEC 30o (remember, it's just for now) 

 

Recalling our trig, we know that the cosine of 30o is the (square root of 3) over 2

 

The cosine of our small triangle, CDE, is DE over CE

The cosine of our small triangle, CDE, is (sqrt 3) over 2

 

Set them equal                            DE / CE = (sqrt 3) / 2

Multiply both sides by CE            DE = CE * (sqrt 3) / 2

But CE is half of 15 so                 DE = 7.5 * (sqrt 3) / 2

                                                    DE = 3.75 * (sqrt 3)

 

But remember angle CED is a little smaller than 30o so that makes the cosine a little larger

 

Looking at the multiple choices, 4  * (sqrt 3) is a little larger than 3.75 * (sqrt 3)

 

None of the other choices is even close, therefore A has to be the right answer .... 4 * (sqrt 3) 

.

May 27, 2019
May 26, 2019
 #1
avatar
-1
May 26, 2019
 #1
avatar+128474 
+5

Maybe not the most simple way....but

 

Let A(--2, 4)    B = (2, 4)    C  = (2, 0)    D = (-2, 0)

 

The height of the equilateral triangle will  be    side/ 2 * sqrt (3)  = 4/2 * sqrt (3) = 2 sqrt (3)

 

So point E will be located at  (0, 4 - 2sqrt (3) )

And using points B and E we can write the equation for the line containg the segment BE

The slope is    [ 4 -(4- 2sqrt (3)) ] / [ 2 - 0]  =  2sqrt(3) / 2  =  sqrt (3)

So....the equation of this line  is

y =  sqrt (3) ( x - 2) + 4

y = sqrt (3)x - 2sqrt(3) + 4

y = sqrt (3)x + (4 - 2sqrt (3) )       (1)

 

And we can find the equation of the line that joins AC

The slope is   [ 4 - 0 ] / [ -2 - 2 ]  =   4/-4 = - 1

So....the equation of this line is

y = -(x - 0) + 2

y = -x + 2       (2)

 

Set (1)  = (2) to find the x coordinate of P

 

sqrt (3) x + (4 - 2sqrt (3) )  = - x + 2        rearrange

 

x ( sqrt (3) + 1)  =  2 - 4 + 2sqrt (3)

x ( sqrt (3) + 1)  =  2sqrt (3) - 2

 

x  =  [ 2sqrt ( 3) - 2 ]

       _____________        rationalize the denominator

            sqrt (3) + 1

 

        [ 2sqrt (3) - 2 ] [ sqrt (3) - 1]             6 - 2sqrt (3) - 2sqrt (3) + 2

x =  ________________________  =   _______________________  =

        [sqrt (3)+ 1] [ sqrt (3) - 1 ]                    3 -  1

 

8 - 4sqrt (3)                4 - 2sqrt (3)

_________       =

    2

 

So the y coordinate of P  =

 

y = -( 4- 2sqrt (3))+ 2  =   2sqrt (3) - 2

 

So  the  area  of triangle APE  =   Area of triangle ABE - Area of triangle APB

 

Area of triangle  AEB  = (1/2)base * (height)  =  (1/2) (4) (  2sqrt (3))  = 2 (2sqrt (3))  = 

4sqrt (3)  units^2

 

And the area of triangle  APB  = (1/2) base (height) = (1/2)(4) [4 - (2sqrt (3) - 2 ) ]  =

2 ( 6 - 2sqrt (3) )  =  12 - 4sqrt (3)   units^2

 

So...the area of triangle APE  =  [ 4sqrt (3)]  - [ 12 - 4sqrt (3) ]  = [8sqrt (3) - 12] units^2 =

 

4 [ 2sqrt (3) - 3 ]  units^2  

 

 

cool cool cool

May 26, 2019

1 Online Users