Questions   
Sort: 
 #2
avatar+170 
+1
Jul 28, 2019
 #2
avatar+26400 
+4

A fair six-sided number cube with the digits 1-6 on its faces is rolled three times.
The positive difference between the values on the first two rolls is equal to the value of the third roll.
What is the probability that at least one 3 was rolled?
Express your answer as a common fraction.

 

\(\begin{array}{|c|c|c|c|} \hline \text{first roll} & \text{second roll} & \text{third roll} \\ \mathbf{ 1} & (\text{difference}) &\text{1 2 $\color{red}3$ 4 5 6} \\ \hline & 1~(0) & \text{_ _ _ _ _ _} \\ & 2~(1) & \text{$\color{blue}x$_ _ _ _ _} \\ & {\color{red}3}~(2) & \text{_ $\color{red}x$ _ _ _ _} \\ & 4~(3) & \text{_ _ $\color{red}x$ _ _ _} \\ & 5~(4) & \text{_ _ _ $\color{blue}x$ _ _} \\ & 6~(5) & \text{_ _ _ _ $\color{blue}x$ _} \\ \hline \end{array} \begin{array}{|c|c|c|c|} \hline \text{first roll} & \text{second roll} & \text{third roll} \\ \mathbf{2} & (\text{difference}) &\text{1 2 $\color{red}3$ 4 5 6} \\ \hline & 1~(1) & \text{$\color{blue}x$_ _ _ _ _} \\ & 2~(0) & \text{_ _ _ _ _ _} \\ & {\color{red}3}~(1) & \text{$\color{red}x$_ _ _ _ _} \\ & 4~(2) & \text{_ $\color{blue}x$ _ _ _ _} \\ & 5~(3) & \text{_ _ $\color{red}x$ _ _ _} \\ & 6~(4) & \text{_ _ _ $\color{blue}x$ _ _} \\ \hline \end{array}\)

\(\begin{array}{|c|c|c|c|} \hline \text{first roll} & \text{second roll} & \text{third roll} \\ \mathbf{ {\color{red}3}} & (\text{difference}) &\text{1 2 $\color{red}3$ 4 5 6} \\ \hline & 1~(2) & \text{_ $\color{red}x$ _ _ _ _} \\ & 2~(1) & \text{$\color{red}x$_ _ _ _ _} \\ & {\color{red}3}~(0) & \text{_ _ _ _ _ _} \\ & 4~(1) & \text{$\color{red}x$_ _ _ _ _} \\ & 5~(2) & \text{_ $\color{red}x$ _ _ _ _} \\ & 6~(3) & \text{_ _ $\color{red}x$ _ _ _} \\ \hline \end{array} \begin{array}{|c|c|c|c|} \hline \text{first roll} & \text{second roll} & \text{third roll} \\ \mathbf{ 4} & (\text{difference}) &\text{1 2 $\color{red}3$ 4 5 6} \\ \hline & 1~(3) & \text{_ _ $\color{red}x$ _ _ _} \\ & 2~(2) & \text{_ $\color{blue}x$ _ _ _ _} \\ & {\color{red}3}~(1) & \text{$\color{red}x$_ _ _ _ _} \\ & 4~(0) & \text{_ _ _ _ _ _} \\ & 5~(1) & \text{$\color{blue}x$_ _ _ _ _} \\ & 6~(2) & \text{_ $\color{blue}x$ _ _ _ _} \\ \hline \end{array}\)

\(\begin{array}{|c|c|c|c|} \hline \text{first roll} & \text{second roll} & \text{third roll} \\ \mathbf{ 5} & (\text{difference}) &\text{1 2 $\color{red}3$ 4 5 6} \\ \hline & 1~(4) & \text{_ _ _ $\color{blue}x$ _ _} \\ & 2~(3) & \text{_ _ $\color{red}x$ _ _ _} \\ & {\color{red}3}~(2) & \text{_ $\color{red}x$ _ _ _ _} \\ & 4~(1) & \text{$\color{blue}x$_ _ _ _ _} \\ & 5~(0) & \text{_ _ _ _ _ _} \\ & 6~(1) & \text{$\color{blue}x$_ _ _ _ _} \\ \hline \end{array} \begin{array}{|c|c|c|c|} \hline \text{first roll} & \text{second roll} & \text{third roll} \\ \mathbf{ 6} & (\text{difference}) &\text{1 2 $\color{red}3$ 4 5 6} \\ \hline & 1~(5) & \text{_ _ _ _ $\color{blue}x$ _} \\ & 2~(4) & \text{_ _ _ $\color{blue}x$ _ _} \\ & {\color{red}3}~(3) & \text{_ _ $\color{red}x$ _ _ _} \\ & 4~(2) & \text{_ $\color{blue}x$ _ _ _ _} \\ & 5~(1) & \text{$\color{blue}x$_ _ _ _ _} \\ & 6~(0) & \text{_ _ _ _ _ _} \\ \hline \end{array}\)

 

The probability that at least one 3 was rolled is \(\mathbf{ \dfrac{14\ {\color{red}x} }{30\ {\color{blue}x} } = \dfrac{7}{15} }\)

 

laugh

Jul 28, 2019
 #1
avatar
0
Jul 28, 2019
 #17
avatar+118724 
0

Modular arithmetic

 

https://web2.0calc.com/questions/number-theory_29

 

The American Mathematics College is holding its orientation for incoming freshmen. The incoming freshman class contains fewer than 500 people. When the freshmen are told to line up in columns of 23, 22 people are in the last column. When the freshmen are told to line up in columns of 21, 14 people are in the last column. How many people are in the incoming freshman class?

 

Chris, Alan and I have all answered this in different ways.  For me, Alan's way is simple, different and interesting.

Jul 28, 2019
 #3
avatar+26400 
+1
Jul 28, 2019

1 Online Users

avatar