Questions   
Sort: 
 #1
avatar+130536 
+1

1.What is the upper bound of the function?

f(x)=4x^4−25x^2−5x−13

 

I'll admit....I had this in Pre-Cal  ages ago, but I forgot how to calculate the upper and lower bounds on the zeroes without a littlte "refresher"....here are the steps to finding the upper [ and lower] bounds on the zeroes:

 

1. The leading coefficient must be a "1".....if not.....divide  all the terms by the leading coefficient.....so we have

x^4   - (25/4)x^2 - (5/4) - (13/4)

 

2.  Write down all the coefficients   →   1, (-25/4) , (-5/4) , (-13/4)

 

3. "Throw away" the lead coefficient , 1

 

4. Remove the minus signs  ....so...we are left with the values   25/4, 5/4 , 13/4

 

5. We now have two  possible bounds :

 

(a)  Bound 1  =  the largest value + 1  =  (25/4) + 1  =  (25/4) + (4/4)  =   29/4

(b)  Bound 2  = the sum of all values or 1, whichever is larger.....so...

25/4  + 5/4  + 13/4  =  43/4    which is larger than 1

 

The smallest of these two possible bounds is our answer  =  29/4  =  7.25

 

This tells us that  that the upper  and lower values on zeroes  are  -7.25   and 7.25

 

So....the upper bound is  7.25

 

Look at the graph here:  https://www.desmos.com/calculator/wdwslnqzqa

 

The function has two real roots.....notice that they are contained between  x = -7.25  and x  =7.25

 

I do not know why this works....I expect that the proof of it is difficult  !!!!

 

BTW :  here is a good site that reviews this : https://www.mathsisfun.com/algebra/polynomials-bounds-zeros.html

 

 

cool cool cool

Sep 10, 2019
 #5
avatar+130536 
+1

For problems like these, I like to see if we can discover a pattern

 

Note that  the sum of the digits from 1 -9  inclusive  = 45

And adding the "1" in the next integer, 10, gives us  46

And we can write this sum as

Sum of the individual digits from 1 - 10^1  inclusive   = 1* 45  + 1

 

Next....the sum of the digits of the integers from 1-99 inclusive  =  900    

We can see this because we  have the digits  1-9  in the ones place repreated 10 times  =  10(45)  = 450

And we have the sum of the digits in the tens place as  10  ( 1 + 2 +3 +....9)  = 10 (45)  = 450

And adding the "1"  in the next integer (100) gives us this sum   =  900 + 1 =    20*45 + 1  

 

Following this, the sum of the individual digits of the integers from 1 -999  =   13,500   [check this for yourself]

And adding the "1" in the next integer  (1000)   gives us this sum:

13500 + 1    =    300* 45  +  1

 

Note the pattern that seems to be emerging......the sum of the digits of the integers from 1 - 10^n  inclusive  =

(n) followed by the number of zeroes calculated as (n - 1) * 45    +  1

 

So....for instance .....the sum of  the digits of the integers from 1 -10^1 inclusive  =

(1)  followed by  ( 1 - 1) zeroes * 45 + 1   =

(1) followed by no zeroes * 45 + 1  =

1*45 + 1

 

And the sum of the digits of the integers from   1 - 10^2 inclusive  =

(2)followed by (2-1) zeroes * 45 + 1   =

(2)  followed by 1 zero  * 45 + 1  =

20*45 + 1

 

Note that the sum of the individual digits of the integers from 1 -100^3   =

300*45 + 1......which follows our pattern

 

This seems to imply that  the  sum of the individual digits in the integers from 1 - 10^100 inclusive should be :

 

(100) followed by (100-1) zeroes * 45 + 1  =

100 followed by 99 zeroes * 45 + 1  =

10^101 * 45 + 1  =

4.5 * 10^102  +  1       as found by the Guest and heureka  !!!!

 

 

cool cool cool

Sep 10, 2019
 #6
avatar+118724 
+1
Sep 10, 2019

1 Online Users