Questions   
Sort: 
 #3
avatar+26404 
+1

​ Please help

\(\dfrac{\sec^2 \left(\dfrac{4}{x} \right)-1}{\cos \left(\dfrac{6}{x} \right)-\cos \left(\dfrac{2}{x} \right)} \)


\(\begin{array}{|rcll|} \hline && \mathbf{\dfrac{\sec^2 \left(\dfrac{4}{x} \right)-1}{\cos \left(\dfrac{6}{x} \right)-\cos \left(\dfrac{2}{x} \right)}} \\\\ &&\qquad \boxed{\sec^2 \left(\dfrac{4}{x} \right)-1 = \dfrac{\sin^2 \left(\dfrac{4}{x} \right)}{\cos^2 \left(\dfrac{4}{x} \right)} \\~\\= \sin^2 \left(\dfrac{4}{x} \right)\sec^2 \left(\dfrac{4}{x} \right) } \\\\ &=& \dfrac{\sin^2 \left(\dfrac{4}{x} \right)\sec^2 \left(\dfrac{4}{x} \right) } {\cos \left(\dfrac{6}{x} \right)-\cos \left(\dfrac{2}{x} \right)} \\\\ &&\qquad \boxed{ \cos \left(\dfrac{6}{x} \right)-\cos \left(\dfrac{2}{x} \right) = -2\sin \left( \dfrac{6+2}{x} \above 1pt 2 \right) \sin \left( \dfrac{6-2}{x}\above 1pt 2 \right) \\~\\= -2\sin \left(\dfrac{4}{x} \right) \sin \left(\dfrac{2}{x} \right) } \\\\ &=& \dfrac{\sin^2 \left(\dfrac{4}{x} \right)\sec^2 \left(\dfrac{4}{x} \right) } {-2\sin \left(\dfrac{4}{x} \right) \sin \left(\dfrac{2}{x} \right)} \\\\ &=& -\dfrac{\sin \left(\dfrac{4}{x} \right)\sec^2 \left(\dfrac{4}{x} \right) } {2 \sin \left(\dfrac{2}{x} \right)} \\\\ &=& -\dfrac{\sin \left(2\cdot \dfrac{2}{x} \right)\sec^2 \left(\dfrac{4}{x} \right) } {2 \sin \left(\dfrac{2}{x} \right)} \\\\ &&\qquad \boxed{ \sin \left(2\cdot \dfrac{2}{x} \right) = 2 \sin \left(\dfrac{2}{x} \right)\cos \left(\dfrac{2}{x} \right) } \\\\ &=& -\dfrac{ 2 \sin \left(\dfrac{2}{x} \right)\cos \left(\dfrac{2}{x} \right)\sec^2 \left(\dfrac{4}{x} \right) } {2 \sin \left(\dfrac{2}{x} \right)} \\\\ &=& \mathbf{-\cos \left(\dfrac{2}{x} \right)\sec^2 \left(\dfrac{4}{x} \right)} \\ \hline \end{array}\)

 

 

laugh

Sep 24, 2019

0 Online Users