Questions   
Sort: 
 #1
avatar+586 
-1
Nov 5, 2019
 #4
avatar+26388 
+5

w and z are 2 different complex numbers.

|wz|=40

|w+z|=13

w = 3+4i

find z

 

\(\text{Let $z=x+yi$}\)

 

1.

\(\begin{array}{|rcll|} \hline \mathbf{|wz|} &=& \mathbf{40} \\ \hline wz &=& (3+4i)(x+yi) \\ &=& 3x+3yi+4xi-4y \quad | \quad i^2 = -1 \\ &=& 3x-4y+(4x+3y)i \\ |wz| &=& \sqrt{(3x-4y)^2+(4x+3y)^2} \\ &=& \sqrt{ 9x^2-24xy+16y^2+16x^2+24xy+9y^2 } \\ &=& \sqrt{ 25x^2 +25y^2} \\ |wz| &=& 5\sqrt{ x^2 +y^2} \quad | \quad |wz| = 40 \\ 40 &=& 5\sqrt{ x^2 +y^2} \quad | \quad : 5 \\ 8 &=& \sqrt{ x^2 +y^2} \\ \sqrt{ x^2 +y^2} &=& 8 \\ \mathbf{x^2 +y^2} &=& \mathbf{64} \qquad (1) \\ \hline \end{array}\)

 

2.

\(\begin{array}{|rcll|} \hline \mathbf{|w+z|} &=& \mathbf{13} \\ \hline w + z &=& (3+4i)+(x+yi) \\ &=& (3+x) + (4+y)i \\ |w+z| &=& \sqrt{(3+x)^2+(4+y)^2 } \\ &=& \sqrt{ 9+6x+x^2+16+8y+y^2 } \\ &=& \sqrt{ 25+6x+8y +x^2+y^2 } \quad | \quad x^2+y^2 = 64 \\ &=& \sqrt{ 25+6x+8y + 64 } \\ |w+z| &=& \sqrt{ 89+6x+8y } \quad | \quad |w+z| = 13 \\ 13 &=& \sqrt{ 89+6x+8y } \\ 13^2 &=& 89+6x+8y \quad | \quad -89 \\ 80 &=&6x+8y \quad | \quad : 2 \\ 40 &=& 3x+4y \\ 4y &=& 40-3x \\ \mathbf{y} &=& \mathbf{\dfrac{40-3x }{4}} \qquad (2) \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline \mathbf{x^2 +y^2} &=& \mathbf{64} \quad | \quad \mathbf{y=\dfrac{40-3x }{4}} \\\\ x^2+\left( \dfrac{40-3x }{4} \right)^2 &=& 64 \\ x^2+ \dfrac{(40-3x)^2 }{16} &=& 64 \quad | \quad \cdot 16 \\ 16x^2+ (40-3x)^2 &=& 1024 \\ 16x^2+40^2-240x+9x^2 &=& 1024 \\ 25x^2-240x +576 &=& 0 \\\\ x &=& \dfrac{240 \pm \sqrt{240^2-4\cdot 25\cdot 576} }{2\cdot 25 } \\ x &=& \dfrac{240 \pm \sqrt{57600 -57600} }{50} \\ x &=& \dfrac{240}{50} \\ \mathbf{x} &=& \mathbf{\dfrac{24 }{5} } \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline \mathbf{y} &=& \mathbf{\dfrac{40-3x }{4}} \quad | \quad \mathbf{x=\dfrac{24}{5}} \\\\ y &=& \dfrac{40-3\cdot \dfrac{24}{5} }{4} \\ y &=& 10-3\cdot \dfrac{6}{5} \\ y &=& \dfrac{50-18}{5} \\ y &=& \dfrac{32}{5} \\ \mathbf{y} &=& \mathbf{\dfrac{32}{5}} \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline \mathbf{z} &=& \mathbf{\dfrac{24}{5} + \dfrac{32}{5}i } \\ \hline \end{array}\)

 

laugh

Nov 5, 2019
 #13
avatar+26388 
+1

What is the smallest whole number that has

a remainder of 1 when divided by 4,

a remainder of 1 when divided by 3,

and a remainder of 2 when divided by 5

 

So it becomes:

x = 1 mod(4)

x = 1 mod(3)

x = 2 mod(5)

 

\(\begin{array}{rcll} x &\equiv& {\color{red}1} \pmod {{\color{green}4}} \\ x &\equiv& {\color{red}1} \pmod {{\color{green}3}} \\ x &\equiv& {\color{red}2} \pmod {{\color{green}5}} \\ \text{Let } m &=& 4\cdot 3\cdot 5 = 60 \\ \end{array}\)

 

Because 4 and 3 and 5 are relatively prim  we can go on:

 

\(\begin{array}{|rclcl|} \hline x &=& {\color{red}1} \cdot {\color{green}3\cdot 5} \cdot \left[\dfrac{1}{\color{green}3\cdot 5}\pmod{4} \right] + {\color{red}1} \cdot {\color{green}4\cdot 5} \cdot \left[\dfrac{1}{\color{green}4\cdot 5}\pmod{3} \right] \\ &+& {\color{red}2} \cdot {\color{green}4\cdot 3} \cdot \left[\dfrac{1}{\color{green}4\cdot 3}\pmod{5} \right] + {\color{green}4\cdot 3\cdot 5}\cdot k \quad | \quad k \in \mathbb{Z} \\ \hline && \left[\dfrac{1}{\color{green}3\cdot 5}\pmod{4} \right] \\ && \equiv \left[ { (\color{green}3\cdot 5) }^{\varphi({\color{green}4}) -1 } \pmod {{\color{green}4}} \right] \quad | \quad \varphi({\color{green}4}) = 2 \\ && \equiv \left[ { 15 }^{2 -1} \pmod {{\color{green}4}} \right] \\ && \equiv \left[ { 15 } \pmod {{\color{green}4}} \right] \\ && \equiv \left[ { 3 } \pmod {{\color{green}4}} \right] \\ \hline && \left[\dfrac{1}{\color{green}4\cdot 5}\pmod{3} \right] \\ && \equiv \left[ { (\color{green}4\cdot 5) }^{\varphi({\color{green}3}) -1 } \pmod {{\color{green}3}} \right] \quad | \quad \varphi({\color{green}3}) = 2 \\ && \equiv \left[ { 20 }^{2 -1} \pmod {{\color{green}3}} \right] \\ && \equiv \left[ { 20 } \pmod {{\color{green}3}} \right] \\ && \equiv \left[ { 2 } \pmod {{\color{green}3}} \right] \\ \hline && \left[\dfrac{1}{\color{green}4\cdot 3}\pmod{5} \right] \\ && \equiv \left[ { (\color{green}4\cdot 3) }^{\varphi({\color{green}5}) -1 } \pmod {{\color{green}5}} \right] \quad | \quad \varphi({\color{green}5}) = 4 \\ && \equiv \left[ { 12 }^{4 -1} \pmod {{\color{green}5}} \right] \\ && \equiv \left[ { 12^3 } \pmod {{\color{green}5}} \right] \quad 12 \pmod{5} \equiv 2 \pmod{5} \\ && \equiv \left[ { 2^3 } \pmod {{\color{green}5}} \right] \\ && \equiv \left[ { 8 } \pmod {{\color{green}5}} \right] \\ && \equiv \left[ { 3 } \pmod {{\color{green}5}} \right] \\ \hline x &=& {\color{red}1} \cdot {\color{green}3\cdot 5} \cdot [3] + {\color{red}1} \cdot {\color{green}4\cdot 5} \cdot [2] + {\color{red}2} \cdot {\color{green}4\cdot 3} \cdot [3] + 60\cdot k \quad | \quad k \in \mathbb{Z} \\ x &=& 45+ 40 + 72 + 60\cdot k \\ x &=& 157+ 60\cdot k \quad | \quad 157 \pmod {60} = 37 \\ x &=& 37+ 60\cdot k \qquad k \in Z \\ \mathbf{x_{min}} &=& \mathbf{ 37} \\ \hline \end{array}\)

 

laugh

Nov 5, 2019

1 Online Users