Questions   
Sort: 
 #21
avatar+118658 
0

What is the remainder when   x^3 + x^6 + x^9 + x^27   is divided by   x^2 - 1  ?     

Well answered by Heureka and Tiggsy.   Thanks.

 

https://web2.0calc.com/questions/help_27892

 

 

AND

 

A semicircle is inscribed in a quadrilateral ABCD in such a way that the midpoint of BC coincides with the center of the semicircle, and the diameter of the semicircle lies along a portion of BC. If AB = 4 and CD = 5, what is BC?

 

https://web2.0calc.com/questions/help_97402       

Thanks for the great answer Tiggsy

Nov 29, 2019
 #2
avatar+118658 
+1

 

Thanks Heureka,

 

What is the remainder when x^3 + x^6 + x^9 + x^27 is divided by x^2 - 1?

 

Heureka has done this the standard way but I just wanted to see if I could figure out how to do it without the 

algebraic division.  I think my method is valid but I am not 100% sure on the divide by 2 bit.  I think it is valid though.

 

 

 

\(x^2-1=(x-1)(x+1)\\ let\;\;f(x)=x^3+x^6+x^9+x^{27}\\ \text{When f(x) is divided by x+1 the remainder will be }f(-1)\\ f(-1)=-1+1-1-1=-2\\ \frac{x^3+x^6+x^9+x^{27}}{(x+1)(x-1)}\\ =\frac{x^3+x^6+x^9+x^{27}+2}{(x+1)(x-1)}+\frac{-2}{(x+1)(x-1)}\\ =\frac{x^3+x^6+x^9+x^{27}+2}{(x+1)(x-1)}+\frac{-2}{(x+1)(x-1)}\\ =g(x)+\frac{(1+1+1+1+2)/2}{(x-1)}+\frac{-2}{(x+1)(x-1)}\\\qquad \qquad \text{I divided by 2 because I factored out (x+1)}\\ \\ \qquad \qquad if \;\;Q(x)=x+1\;\;then\;\;Q(1)=2\\~\\ =g(x)+\frac{3}{(x-1)}+\frac{-2}{(x+1)(x-1)}\\ =g(x)+\frac{3(x+1)}{(x-1)(x+1)}+\frac{-2}{(x+1)(x-1)}\\ =g(x)+\frac{3x+1}{(x-1)(x+1)}\\ \text{so the remainder will be }3x+1\)

 

 

 

 

---------------

coding

x^2-1=(x-1)(x+1)\\
let\;\;f(x)=x^3+x^6+x^9+x^{27}\\
\text{When f(x) is divided by x+1 the remainder will be }f(-1)\\
f(-1)=-1+1-1-1=-2\\
\frac{x^3+x^6+x^9+x^{27}}{(x+1)(x-1)}\\
=\frac{x^3+x^6+x^9+x^{27}+2}{(x+1)(x-1)}+\frac{-2}{(x+1)(x-1)}\\
=\frac{x^3+x^6+x^9+x^{27}+2}{(x+1)(x-1)}+\frac{-2}{(x+1)(x-1)}\\
=g(x)+\frac{(1+1+1+1+2)/2}{(x-1)}+\frac{-2}{(x+1)(x-1)}\\\qquad \qquad \text{I divided by 2 because I factored out (x+1)}\\
\\ \qquad \qquad if \;\;Q(x)=x+1\;\;then\;\;Q(1)=2\\~\\
=g(x)+\frac{3}{(x-1)}+\frac{-2}{(x+1)(x-1)}\\
=g(x)+\frac{3(x+1)}{(x-1)(x+1)}+\frac{-2}{(x+1)(x-1)}\\
=g(x)+\frac{3x+1}{(x-1)(x+1)}\\
\text{so the remainder will be }3x+1

Nov 29, 2019
 #1
avatar+26388 
+4

Express \(\cos(5x)\) as a polynomial in \(\cos(x)\).

 

\(\begin{array}{|rcll|} \hline \mathbf{\Big(\cos(x) + i\sin(x) \Big)^5} &=& \mathbf{\cos(5x) +i\sin(5x)} \\\\ \Big(\cos(x) + i\sin(x) \Big)^5 &=& \binom50\cos^5(x) \\ &+& \binom51\cos^4(x)(i)\sin(x) \\ &+& \binom52\cos^3(x)(i^2)\sin^2(x) \quad & | \quad i^2=-1 \\ &+& \binom53\cos^2(x)(i^3)\sin^3(x) \quad & | \quad i^3=-i \\ &+& \binom54\cos(x)(i^4)\sin^4(x) \quad & | \quad i^4=1 \\ &+& \binom55(i^5)\sin^5(x) \quad & | \quad i^5=i \\\\ &=& \binom50\cos^5(x) \\ &+& \binom51\cos^4(x)(i)\sin(x) \\ &-& \binom52\cos^3(x)\sin^2(x) \\ &-& \binom53\cos^2(x)(i)\sin^3(x) \\ &+& \binom54\cos(x)\sin^4(x) \\ &+& \binom55(i)\sin^5(x) \\ \hline \end{array} \)

 

Compare the real parts of each side:

\(\begin{array}{|rcll|} \hline \cos(5x) &=& \binom50\cos^5(x) \\ &-& \binom52\cos^3(x)\sin^2(x) \\ &+& \binom54\cos(x)\sin^4(x) \\\\ \cos(5x) &=& \binom50\cos^5(x) \quad & | \quad \binom50 = 1 \\ &-& \binom52\cos^3(x)\sin^2(x) \quad & | \quad \binom52 = 10,\ \sin^2(x)=1-\cos^2(x) \\ &+& \binom54\cos(x)\sin^2(x)\sin^2(x) \quad & | \quad \binom54 = 5,\ \sin^2(x)=1-\cos^2(x) \\\\ \cos(5x) &=& \cos^5(x) \\ &-& 10\cos^3(x)\Big(1-\cos^2(x)\Big) \\ &+& 5\cos(x)\Big(1-\cos^2(x)\Big)\Big(1-\cos^2(x)\Big) \\\\ \cos(5x) &=& \cos^5(x) \\ &-& 10\cos^3(x) + 10\cos^5(x) \\ &+& 5\cos(x)\Big(1-\cos^2(x)\Big)^2 \\\\ \cos(5x) &=& \cos^5(x) \\ &-& 10\cos^3(x) + 10\cos^5(x) \\ &+& 5\cos(x)\Big(1-2\cos^2(x)+\cos^4(x)\Big) \\\\ \cos(5x) &=& \cos^5(x) \\ &-& 10\cos^3(x) + 10\cos^5(x) \\ &+& 5\cos(x) -10\cos^3(x)+5\cos^5(x) \\\\ \mathbf{\cos(5x)} &=& \mathbf{ 16\cos^5(x) - 20\cos^3(x) + 5\cos(x) } \\ \hline \end{array}\)

 

laugh

Nov 29, 2019

5 Online Users

avatar
avatar
avatar