gibsonj338

avatar
Usernamegibsonj338
Score1904
Membership
Stats
Questions 101
Answers 460

 #2
avatar+1904 
0

To change a decimal number into a fraction, it depends on what kind of decimal number you are talking about: terminating, repeating, or irrational.

 

To change a terminating decimal into a fraction:

 

Example:  \(0.125\)

 

Change the terminating decimal into an integer by multiplying by the place value of the number and then putting the place value under the new number.  

 

\(0.125\times1000\)

 

\(125\)

 

\(125/1000\)

 

Reduce the fracton to its lowest term if possible.

 

\(\frac{1}{8}\)

 

To change a repeating decimal into a fraction:

 

Example 1:  \(0.66666666...\)

 

Set the repeating deimal equal to a variable.  I will use \(x.\)

 

\(x=0.66666666...\)

 

Multiply the variable and the repeating decimal by the place holder of the first repeating number.

 

\(10x=6.6666666...\)

 

Subtract \(x\) from \(10x\).

 

\(10x=6.6666666...\)

\(-\)\(x=0.66666666...\)

---------------------------------

\(9x=6\)

 

Solve for \(x.\)

 

\(9x=6\)

 

\(x=\frac{6}{9}\)

 

Reduce the fraction to its lowest term if possible

 

\(x=\frac{2}{3}\)

 

Drop the \(x.\)

 

\(\frac{2}{3}\)

 

Example 2:

 

\(0.1222222...\)

 

Set the repeating deimal equal to a variable.  I will use \(x.\)

 

\(x=0.1222222...\)

 

Multiply the variable and the repeating decimal by the place holder of the first repeating number.

 

\(10x=1.222222...\)

 

Subtract \(x\) from \(10x\).

 

\(10x=1.22222...\)

\(-\)\(x=0.1222222...\)

---------------------------------

\(9x=1.1\)

 

Solve for \(x.\)

 

\(9x=1.1\)

 

\(x=\frac{1.1}{9}\)

 

Multiply the numerator by a multiple of \(10\) to get the numerator to be a whole number.  Whatever number you multiply the numerator by you do the same to the demonator.

 

\(x=\frac{11}{90}\)

 

Reduce the fraction to its lowest term if possible

 

\(x=\frac{11}{90}\)

 

Drop the \(x.\)

 

\(\frac{11}{90}\)

 

An irrational number cannot be changed into a fraction because an irrational number is a decimal number that not only acts like a repeating decimal (a decimal number that goes on forever), but none of the digits repeat in a pattern.  Two such examples of an irrational number are \(\pi\) (pi) and \(e\) (Euler's number).  \(\pi= 3.1415926535897932...\) and \(e= 2.7182818284590452...\) 

Mar 31, 2016