Questions   
Sort: 
 #1
avatar+23246 
+1

I'll try the first one.

Since the triangle has side lengths of 10, 24, and 26, this triangle is a right triangle (102 + 242 = 262).

 

The center of the circumcenter of a right triangle is the midpoint of the hypotenuse.

Since the hypotenuse has a length of 26, the distance from this point to any of the vertices is 13.

Therefore, the area of the circumcircle is:  pi·132  =  169·pi.

 

The center of the incircle is the point of intersection of the angle bisectors.

Call the vertex between the 10 and 24 sides = C (it is a right angle).

Call the vertex between the 24 and 26 sides = A.

Call the center of the incircle X.

Draw the perpendicular from X to side AC; call this point Y; this is a radius of the incircle;

call its value 'h'.

Angle C = 90o; therefore, angle(XCY) = 45o.

I will need to find the size of angle(XAY).

I will use the sin(A) in triangle ABC) and find one-half of that value.

sin(A) = 10/26   --->   A  =  sin-1(10/26)  =  22.61986o   --->   angle(XAY)  =  11.31o.

 

Now, to find the value of h:

Call the distance from C to Y 'x'; therefore, the distance from A to Y is '24 - x'.

 

In triangle(XCY), tan(45o)  =  h/x   --->   h  =  x·tan(45o).

In triangle (XAY), tan(11.31o)  =  h/(24 - x)   --->  h  =  (24 - x)·tan(11.31o). 

 

Setting these two equation equal to each other:  x·tan(45o)  =  (24 - x)·tan(11.31o)

--->   x·tan(45o)  = 24·tan(11.31o) - x·tan(11.31o)

--->   x·tan(45o) + x·tan(11.31o)  =  24·tan(11.31o)

--->   x·( tan(45o) + tan(11.31o) )  =  24·tan(11.31o)

--->   x  =  24·tan(11.31o) / [ tan(45o) + tan(11.31o) ]

--->   x  =  4

 

Therefore, the area of the incircle is:  pi·42  =  16·pi.

 

169·pi  -  16·pi  =  153·pi 

Feb 22, 2020
 #5
avatar+26367 
+2

In the diagram, O is lacated at (0,0), U is located at (7,6),
and V is located at (11,6).
Assume that R, S, T, U, V, and W are midpoints.

 

\(1)\\ \begin{array}{|rcl|rcl|rcl|} \hline R &=& U + \dfrac{TR}{2} & \dfrac{TR}{2}+T &=& U & T &=& \dfrac{Q}{2} \\ && & \dfrac{TR}{2}+\dfrac{Q}{2} &=& U \\ && & \dfrac{TR}{2} &=& U-\dfrac{Q}{2} \\ R &=& U + U-\dfrac{Q}{2} \\ \mathbf{R} &=& \mathbf{2U-\dfrac{Q}{2}} \\ \hline S &=& T+TS & T+\dfrac{TS}{2} &=& V & T &=& \dfrac{Q}{2} \\ & & & \dfrac{Q}{2}+\dfrac{TS}{2} &=& V \quad | \quad *2 \\ & & & Q+TS &=& 2V \\ & & & TS &=& 2V-Q \\ S &=& \dfrac{Q}{2} + 2V-Q \\ \mathbf{S} &=& \mathbf{2V-\dfrac{Q}{2}} \\ \hline \end{array}\)

 

\(2)\\ \begin{array}{|rcl|rcl|rcl|} \hline && &P &=& S + \dfrac{QP}{2} & QP &=& 2(S-Q) \\ && &P &=& S + (S-Q) \\ && &P &=& 2S-Q & S&=&2V-\dfrac{Q}{2} \\ && &P &=& 4V-Q-Q \\ && &\mathbf{P} &=& \mathbf{4V-2Q} \\ \hline && &P &=& 2R & R&=&2U-\dfrac{Q}{2} \\ && &\mathbf{P} &=& \mathbf{4U-Q} \\ P= 4U-Q &=& 4V-2Q \\ 4U-Q &=& 4V-2Q \\ \mathbf{ Q }&=& \mathbf{4V-4U} \\ \hline \end{array} \\ 3)\\ \begin{array}{|rcl|rcl|rcl|} \hline W&=& \dfrac{1}{2}( R+S )& R&=&2U-\dfrac{Q}{2} & S&=&2V-\dfrac{Q}{2} \\ W&=& \dfrac{1}{2}( 2U-\dfrac{Q}{2}+2V-\dfrac{Q}{2} ) \\ W&=& \dfrac{1}{2}( 2U+2V-Q ) \\ \mathbf{ W }&=& \mathbf{U+V-\dfrac{Q}{2}} \\ \hline \end{array}\)

 

\(\text{Summary:}\quad Q=4V-4U \\ \begin{array}{|rcll|} \hline T&=& \dfrac{Q}{2} \\ R&=& 2U-\dfrac{Q}{2} \\ S&=& 2V-\dfrac{Q}{2} \\ W&=& U+V-\dfrac{Q}{2} \\ P&=& 4U-Q \\ \hline \end{array}\)

 

Substitute \(Q\):

\(\begin{array}{|rcll|} \hline T &=& -2U+2V \\ Q &=& -4U+4V \\ R &=& 4U-2V \\ S &=& 2U \\ W &=& 3U-V \\ P &=& 8U-4V \\ \hline \end{array}\)

 

Substitute \(U(7,6)\) and \(V(11,6)\):

\(\begin{array}{|rcll|} \hline \mathbf{T} &=& -2(7,6)+2(11,6) = (-14+22, -12+12) =\mathbf{(8,0)}\\ \mathbf{Q} &=& -4(7,6)+4(11,6) = (-28+44, -24+24) =\mathbf{(16,0)}\\ \mathbf{R} &=& 4(7,6)-2(11,6) = (28-22, 24-12) =\mathbf{(6,12)}\\ \mathbf{S} &=& 2(7,6) = \mathbf{(14, 12)} \\ \mathbf{W} &=& 3(7,6)-(11,6) = (21-11, 18-6) =\mathbf{(10,12)}\\ \mathbf{P} &=& 8(7,6)-4(11,6) = (56-44, 48-24) =\mathbf{(12,24)}\\ \hline \end{array}\)

 

 

laugh

Feb 22, 2020

1 Online Users