Questions   
Sort: 
 #2
avatar+2 
+1

In secondary school, the adjugate strategy (otherwise called the adjoint) and the Gauss-Jordan end technique are usually taught. Here, I will depict a somewhat intriguing technique that utilizes the Cayley-Hamilton hypothesis. 

 

For an n×n 

 

network, this technique requires finding the determinant of one n×n lattice, containing a vague x, and the result of (n−1) 

indistinguishable networks. 

 

Here is a bit by bit record of this technique. We expect that the n×n 

the framework we require the reverse of is a get your assignment done online, whose passages are (aij).

 

    Construct the matrix M

 

whose diagonal entries are (x−aii) and whose off-diagonal entries are −aij
.
Find the determinant of M
, and expand the resulting polynomial p(x)
.
If c0
, the coefficient of x0 in p(x), is 0, then halt. The matrix A
has no inverse.
Otherwise, let q(x)=−1c0(p(x)−c0x)
. The inverse of matrix A is q(A).

Mar 18, 2020
 #1
avatar+26388 
+2

Let the matrix \(\mathbf{A} = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}\).
Calculate \(\mathbf{A}^{10} \begin{pmatrix}1 \\ 0 \end{pmatrix},\ \mathbf{A}^{10} \begin{pmatrix}0 \\ 1 \end{pmatrix}\).

 

\(\begin{array}{|lrcll|} \hline \mathbf{A}^{\color{red}1} & &=& \begin{pmatrix} 1 & 2\cdot \color{red}1 \\ 0 & 1 \end{pmatrix} \\\\ \mathbf{A}^{\color{red}2} & = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}\begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} &=& \begin{pmatrix} 1 & 2\cdot \color{red}2 \\ 0 & 1 \end{pmatrix} \\\\ \mathbf{A}^{\color{red}3} & = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}\begin{pmatrix} 1 & 2\cdot 2 \\ 0 & 1 \end{pmatrix} &=& \begin{pmatrix} 1 & 2\cdot \color{red}3 \\ 0 & 1 \end{pmatrix} \\\\ \mathbf{A}^{\color{red}4} & = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}\begin{pmatrix} 1 & 2\cdot 3 \\ 0 & 1 \end{pmatrix} &=& \begin{pmatrix} 1 & 2\cdot \color{red}4 \\ 0 & 1 \end{pmatrix} \\\\ \cdots \\ \mathbf{A}^{\color{red}10} & &=& \begin{pmatrix} 1 & 2\cdot \color{red}10 \\ 0 & 1 \end{pmatrix} \\ \hline \end{array} \)

 

\(\begin{array}{|rcll|} \hline && \mathbf{A}^{\color{red}10}\begin{pmatrix}1 \\ 0 \end{pmatrix} \\ &=& \begin{pmatrix} 1 & 20 \\ 0 & 1 \end{pmatrix}\begin{pmatrix}1 \\ 0 \end{pmatrix} \\ &=& \begin{pmatrix}1 \\ 0 \end{pmatrix} \\ \hline \end{array} \begin{array}{|rcll|} \hline && \mathbf{A}^{\color{red}10} \begin{pmatrix}0 \\ 1 \end{pmatrix} \\ &=& \begin{pmatrix} 1 & 20 \\ 0 & 1 \end{pmatrix}\begin{pmatrix}0 \\ 1 \end{pmatrix} \\ &=& \begin{pmatrix}20 \\ 1 \end{pmatrix} \\ \hline \end{array}\)

 

laugh

Mar 18, 2020
 #1
avatar+118658 
+2

This question has already been done to death.

 

https://web2.0calc.com/questions/counting-problem_8

 

You can continue the discussion on the original thread if you want to.

 

Continue on the original thread BUT you can put a link here saying you have done so. (Otherwise, your addition is likely to be overlooked)

Mar 18, 2020
 #2
avatar+71 
0
Mar 18, 2020
 #1
avatar+26388 
+1

If \(n\) is a positive integer and \((x+1)^n\) is expanded in decreasing powers of \(x\),
three consecutive numerical coefficients are in the ratio \(2:15:70\). Compute \(n\).

 

\(\begin{array}{|rcll|} \hline \mathbf{\dbinom{n}{k + 1}} &=& \dfrac{n!}{(k+1)!(n-k-1)!} \quad &| \quad k!(k+1)=(k+1)! \\\\ &=& \dfrac{1}{k+1} *\dfrac{n!}{k!(n-k-1)!} \quad &| \quad (n-k-1)!(n-k)=(n-k)! \\\\ &=& \dfrac{n-k}{k+1} * \dfrac{n!}{k!(n-k)!} \quad &| \quad \dfrac{n!}{k!(n-k)!} = \dbinom{n}{k} \\\\ &=& \mathbf{ \dfrac{n-k}{k+1} \dbinom{n}{k} } \\ \hline \end{array} \)


similarly \( \mathbf{\dbinom{n}{k - 1} = \dfrac{k}{n-k+1} \dbinom{n}{k} }\)

 

\(\begin{array}{|rcll|} \hline \dbinom{n}{k - 1} : \dbinom{n}{k} : \dbinom{n}{k + 1} &=& 2:15:70 \\\\ &&\boxed{ \mathbf{\dbinom{n}{k - 1} = \dfrac{k}{n-k+1} \dbinom{n}{k} }\\ ~\\ \mathbf{\dbinom{n}{k + 1} = \dfrac{n-k}{k+1} \dbinom{n}{k} } } \\\\ \dfrac{k}{n-k+1} \dbinom{n}{k} : \dbinom{n}{k} : \dfrac{n-k}{k+1} \dbinom{n}{k} &=& 2:15:70 \\ \hline \dfrac{\dbinom{n}{k}}{\dfrac{k}{n-k+1} \dbinom{n}{k}} &=& \dfrac{15}{2} \\\\ \dfrac{n-k+1}{k} &=& \dfrac{15}{2} \\\\ n-k+1 &=& \dfrac{15}{2}k \\ n &=& \dfrac{15}{2}k +k-1\\ \mathbf{n} &=& \mathbf{\dfrac{17}{2}k -1} \qquad (1) \\ \hline \dfrac{\dfrac{n-k}{k+1} \dbinom{n}{k} } {\dbinom{n}{k}} &=& \dfrac{70}{15} \\\\ \dfrac{n-k}{k+1} &=& \dfrac{70}{15} \\\\ 70(k+1) &=& 15(n-k) \\ 70k+70 &=& 15n-15k \\ 85k &=& 15n-70 \\ \mathbf{k} &=& \mathbf{ \dfrac{15n-70}{85} } \qquad (2) \\ \hline n &=& \dfrac{17}{2}k -1 \quad | \quad k=\dfrac{15n-70}{85} \\\\ n &=& \dfrac{17(15n-70)}{2*85}-1 \\\\ n &=& \dfrac{17(15n-70)}{170}-1 \\\\ n &=& \dfrac{ 15n-70 }{10}-1 \quad | \quad *10 \\\\ 10n &=& 15n-70-10 \\ 10n &=& 15n-80 \\ 5n &=& 80 \\ n &=& \dfrac{80}{5}\\ \mathbf{n} &=& \mathbf{16} \\\\ k &=& \dfrac{15n-70}{85} \quad | \quad n=16 \\\\ k &=& \dfrac{15*16-70}{85} \\ k &=& \dfrac{170}{85} \\ \mathbf{k} &=& \mathbf{2} \\ \hline \dbinom{n}{k - 1} : \dbinom{n}{k} : \dbinom{n}{k + 1} &=& 2:15:70 \\\\ \dbinom{16}{1} : \dbinom{16}{2} : \dbinom{16}{3} &=& 2:15:70 \\\\ 16 : 120 : 560 &=& 2:15:70 \\ \hline \end{array}\)

 

laugh

Mar 18, 2020
 #1
avatar
0
Mar 18, 2020
Mar 17, 2020

2 Online Users