compute
\(\sin^{6}(3.25^\circ) + 3\sin^{2}(3.25^\circ)\cos^{2}(3.25^\circ) + \cos^{6}(3.25^\circ)\)
\(\begin{array}{|rcll|} \hline && \mathbf{\sin^{6}(3.25^\circ) + 3\sin^{2}(3.25^\circ)\cos^{2}(3.25^\circ) + \cos^{6}(3.25^\circ) \quad | \quad \cos^{2}(3.25^\circ)=1- \sin^{2}(3.25^\circ)} \\ &=& \sin^{6}(3.25^\circ) + 3\sin^{2}(3.25^\circ)\Big(1- \sin^{2}(3.25^\circ)\Big) + \Big(1- \sin^{2}(3.25^\circ)\Big)^3 \\ &=& \sin^{6}(3.25^\circ) + 3\sin^{2}(3.25^\circ)- 3\sin^{4}(3.25^\circ) + \Big(1- \sin^{2}(3.25^\circ)\Big)^3 \\ &=& \sin^{6}(3.25^\circ) + 3\sin^{2}(3.25^\circ)- 3\sin^{4}(3.25^\circ) + 1- 3\sin^{2}(3.25^\circ)+ 3\sin^{4}(3.25^\circ)-\sin^{6}(3.25^\circ) \\ &=& \mathbf{1} \\ \hline \end{array} \)