Questions   
Sort: 
 #1
avatar+9479 
0

The roots of the quadratic equation    \(x^2+bx+c=0\)    are:

 

\(x=\frac{-b+\sqrt{b^2-4c}}{2}\)          and          \(x=\frac{-b-\sqrt{b^2-4c}}{2}\)

 

The difference between these two roots is:

 

\(\frac{-b\ +\ \sqrt{b^2-4c}}{2}-\frac{-b\ -\ \sqrt{b^2-4c}}{2}\\~\\ =\quad\frac{-b\ +\ \sqrt{b^2-4c}}{2}+\frac{b\ +\ \sqrt{b^2-4c}}{2}\\~\\ =\quad\frac{-b\ +\ \sqrt{b^2-4c}\ +\ b\ +\ \sqrt{b^2-4c}}{2}\\~\\ =\quad\frac{ \sqrt{b^2-4c}\ +\ \sqrt{b^2-4c}}{2}\\~\\ =\quad\frac{ 2\sqrt{b^2-4c}}{2}\\~\\ =\quad\sqrt{b^2-4c}\)

 

which we are told must be equal to  \(|b-2c|\) ...so we can make this equation:

 

\(\sqrt{b^2-4c}\ =\ |b-2c|\)                    Now let's solve this equation for  c

 

\((\sqrt{b^2-4c}\ )^2\ =\ (\ |b-2c|\ )^2\)

 

Squaring a negative number gives the same result as squaring the positive version of that number,

so we can drop the absolute value signs

 

\(b^2-4c\ =\ (b-2c)^2 \\~\\ b^2-4c\ =\ (b-2c)(b-2c) \\~\\ b^2-4c\ =\ b^2-4bc+4c^2 \)

                                                       Subtract  b2  from both sides of the equation

\(-4c\ =\ -4bc+4c^2 \)

                                                       Add  4c  to both sides of the equation

\(0 =\ -4bc+4c^2 + 4c\)

                                                       Rearrange the terms

\( 0 =\ 4c^2 -4bc+ 4c \)

                                             Divide through by  4

\( 0 =\ c^2 -bc+ c\)

                                             Factor  c  out of all three terms on the right sidde

\( 0 =\ c(c -b+ 1)\)

                                             Set each factor equal to zero and solve for  c

 

\(\begin{array}{ccc} c=0&\quad\text{or}\quad&c-b+1=0\\ &&c-b=-1\\ &&c=b-1 \end{array}\)

 

Check: https://www.wolframalpha.com/input/. . .

 

So either  c = 0  or  c = b - 1

 

We are given that  c ≠ 0,

 

So it must be that  c = b - 1

Sep 6, 2020
 #1
avatar+9479 
0

△ABC ~ △DBE

 

By looking at the order that the letters are given in the triangle names, we can say that

 

AC / DE   =   BC / BE

                                         Since  AC = 12  we can substitute  12  in for  AC

12 / DE   =   BC / BE

                                         Since  DE = 4  we can substitute  4  in for  DE

12 / 4   =   BC / BE

                                         Since  BE = x  we can substitute  x  in for  BE

12 / 4   =   BC / x

                                         Since  BC  =  BE + EC  we can substitute  BE + EC  in for  BC

12 / 4   =   (BE + EC) / x

                                         Since  BE = x  we can substitute  x  in for  BE, and since  EC = 6  we can substitute  6  in for  EC

12 / 4   =   (x + 6) / x

                                         Now we just have to solve this equation for  x. First let's simplify  12 / 4

3   =   (x + 6) / x

                                         Multiply both sides of the equation by  x

3x   =   x + 6

                                         Subtract  x  from both sides of the equation

3x - x  =  6

                                         3 apples - 1 apple = 2 apples, so  3x - x = 2x

2x   =   6

                                         Divide both sides by  2

x   =   3

Sep 6, 2020
 #1
avatar+9479 
+2

Did you mean to put  \(\frac{(x - k)^2}{9} + y^2 = 1\)   and   \(\frac{(x + k)^2}{9} + y^2 = 1\)   ?     If so.....

 

By finding the x-intercepts and the points of intersection (in terms of k), we can find the slope of line AB, BC, CD, and AD.

Then, once we know a point and the slope of each line, we can find the equations of each line.

 

And so we can make this graph: https://www.desmos.com/calculator/uozsru2uca

 

Now we need to find the value of  k  that makes AB perpendicular to BC

 

(which will also make AB perpendicular to AD, and CD perpendicular to BC, and CD perpendicular to AD)

 

That is, we need to find the value of  k  that makes the following true:

 

the slope of  BC  =  the negative reciprocal of the slope of AB

 

\(-\left(\frac{\sqrt{9-k^{2}}}{9-3k}\right)\quad=\quad\)the negative reciprocal of   \(\left(\frac{\sqrt{9-k^{2}}}{9-3k}\right)\)

 

\(-\left(\frac{\sqrt{9-k^{2}}}{9-3k}\right)\quad=\quad-\left(\frac{9-3k}{\sqrt{9-k^{2}}}\right)\)

                                                                 Multiply both sides of the equation by  -1

\(\frac{\sqrt{9-k^{2}}}{9-3k}\quad=\quad\frac{9-3k}{\sqrt{9-k^{2}}}\)

                                                                 Multiply both sides by  \(\sqrt{9-k^2}\)  and multiply both sides by  \(9-3k\)

\((\sqrt{9-k^2}\ )^2\quad=\quad(9-3k)^2\)

                                                                 Simplify the left side and multiply out the right side

\(9-k^2\quad=\quad(9-3k)(9-3k)\)

 

\(9-k^2\quad=\quad81-54k+9k^2\)

                                                                 Subtract  9  from both sides and add  k2  to both sides

\(0\quad=\quad72-54k+10k^2\)

                                                                 Rearrange the terms

\(0\quad=\quad10k^2-54k+72\)

                                                                 Now we can use the quadratic formula to find  k

\(k\quad=\quad\dfrac{54\pm\sqrt{54^2-4\cdot10\cdot72}}{2\cdot10}\)

 

\(k\quad=\quad\dfrac{54\pm6}{20}\)

 

\(k\quad=\quad3\qquad\text{or}\qquad k\quad=\quad\frac{12}{5}\)

 

If  k = 3  then the points A, B, C, and D are all on the origin. But if  k = 12/5  then ABCD is a regular square.

 

If you would like more explanation on how to find the slopes of lines BC and AB then please let us know! smiley

Sep 6, 2020
 #2
avatar+1094 
+1
Sep 6, 2020
 #2
avatar+1094 
+1
Sep 6, 2020

1 Online Users