Questions   
Sort: 
 #2
avatar
+1

Find equation of one of the other lines in y = mx + b form

 

From the given line  -12/5 x + 2    the distance to the new line needs to be 8

   PERPINDICULAR line is   5/12 x + b

                      distance along  perpindicular line needs to be 8  from 0, 2

                           (x-0)^2 + (y-2)^2 = 8^2

                               use ratios to find the new point  (you should draw a picture)

                                       8/13 = x/12      x = 7.38462    from 0= 7.38462

                                        8/13 = y/5      y = 3.0769        from y =2   = 5.0769     This is our point on the parallel line

                                                                                                                                that is 8 units from 0,2

 

y= mx+b

5.0769 = -12/5 (7.38462)+ b     results in b = ~22.8     this is the y axis crossing    which is   20.8 from the original line y intercept

 

 

            the other parallel line  is also 20.8 from the original intercept      20.8 + 20.8 =

                                                                                                     41.6 units between the y-intercepts of the parallel lines     

Dec 21, 2020

2 Online Users

avatar