Questions   
Sort: 
 #1
avatar+9664 
+2

(a) Because \(z\bar{z} = |z|^2\)\(z\bar{z} = 1^2\). This means \(\overline z= \dfrac1z\).

Similarly, with the exact same steps, \(\overline w= \dfrac1w\).

 

(b) We write z and w in polar form. Let \(z = \cos \theta + i\sin \theta\) and \(w = \cos \phi + i\sin\phi\).

 

\(\dfrac{z + w}{zw + 1} = \dfrac{(\cos \theta + \cos \phi) + i(\sin \theta + \sin \phi)}{(\cos \theta + i\sin \theta)(\cos \phi + i\sin \phi) + 1} = \dfrac{(\cos \theta + \cos \phi) + i(\sin \theta + \sin \phi)}{(\cos \theta \cos \phi - \sin \theta \sin \phi + 1) + i(\sin \theta \cos \phi + \cos \theta \sin \phi)}\)

 

Simplifying, \(\dfrac{z + w}{zw + 1} = \dfrac{((\cos \theta + \cos \phi) + i(\sin \theta + \sin \phi))(\cos(\theta + \phi) + 1 - i\sin(\theta + \phi))}{(\cos(\theta + \phi) + 1)^2+\sin^2 (\theta + \phi)} \)

 

This means \(\operatorname{Im}\left(\dfrac{z + w}{zw + 1}\right) = \dfrac{(\cos(\theta + \phi) + 1)(\sin \theta + \sin \phi) - (\cos \theta + \cos \phi)\sin(\theta + \phi)}{(\cos(\theta + \phi) + 1)^2 + \sin^2(\theta + \phi)}\)

 

Notice that 

\((\cos(\theta + \phi) + 1)(\sin \theta + \sin \phi) \\= \sin \theta + \sin \phi + \sin \theta \cos \theta \cos \phi -\sin^2 \theta \sin \phi + \sin \phi \cos \theta \cos \phi - \sin \theta \sin^2 \phi\\=\sin \theta \cos^2 \phi + \sin \phi \cos^2 \theta+\sin \theta \cos \theta \cos \phi + \sin \phi \cos \theta \cos \phi\)

 

Also, 

\((\cos \theta + \cos \phi)\sin(\theta + \phi)\\ = \cos \theta \sin \theta \cos \phi + \cos \theta \sin \phi \cos \theta+\cos \phi \sin \theta \cos \phi + \cos \phi \sin \phi \cos \theta\\ = \cos \theta \sin \theta \cos \phi + \cos^2 \theta \sin \phi+\cos^2 \phi \sin \theta + \cos \phi \sin \phi \cos \theta\)

 

This means \((\cos(\theta + \phi) + 1)(\sin \theta + \sin \phi) = (\cos \theta + \cos \phi)\sin(\theta + \phi)\).

 

Then it immediately follows that \(\operatorname{Im}\left(\dfrac{z + w}{zw + 1}\right) = 0\), which means \(\dfrac{z + w}{zw + 1}\) is a real number.

Jan 19, 2021
 #1
avatar+9664 
0

Q1. 

Rearranging the equation,

\(x^2 - 7x - 30 = 0\)

Then, using the quadratic formula, 

\(x = \dfrac{7 \pm \sqrt{7^2 - 4\cdot 1 \cdot (-30)}}{2}\)

I will leave the simplification for you.

 

Q2. Similar to Q1. If you understand what I did in Q1, then it's not hard. Just repeat what I did in Q1.

 

Q3. Keyword: "the ... equation ... has a double root."

The discriminant of a quadratic equation which has a double root is 0.

 

\(b^2 - 4\cdot 2 \cdot 18 = 0\\ b^2 - 12^2 = 0\\ (b - 12)(b + 12) = 0\)

Then this means b - 12 = 0 or b + 12 = 0. This is just one step from the answer, I will let you figure out this part.

 

Q4. This is a root relation problem. We will use the formulae for relations of roots.

 

\(\begin{cases} r + s = -\dfrac{(-6)}{1} = 6\\ rs = \dfrac{2}1 = 2 \end{cases}\)

 

We then express (r - s)^2 in terms of r + s and rs. 

 

\((r - s)^2 = r^2 - 2rs + s^2 = (r^2 + 2rs + s^2) - 4rs = (r + s)^2 -4rs\)

 

You can substitute the values of r + s and rs directly.

 

Q5. Similar to Q1. Repeat what I did.

 

Q6. 

\(\dfrac c{c - 5} = \dfrac4{c - 4}\)

 

Cross-multiplying,

\(c(c - 4) = 4(c- 5)\)

 

Expanding,

\(c^2 - 4c = 4c - 20\)

 

Moving everything to the left-hand side,

\(c^2 - 8c + 20 = 0\)

 

Then repeat what I did in Q1.

 

P.S. The entire "Quadratic Equation" part of the syllabus is for solving equations of the form ax^2 + bx + c = 0, so make sure you put the question in this form before you proceed.

 

P.P.S. Some parts need knowledge of discriminant \(\Delta = b^2 - 4ac\) and the root relation formulae. 

 

P.P.P.S. If you don't understand any part of my solutions, feel free to ask me.

Jan 19, 2021

2 Online Users

avatar