The question is as follows:
The base of a solid is the region between the parabolas x=y^2 and 2y^2 = 3-x . Find the volume of the solid if the cross-sections perpendicular to the x-axis are equilateral triangles.
Hello Guest!
The parabolas intersect in P(1,1) and P(1,-1). They share the domain of the integral.
The entire domain is 0≤x≤3.
AΔ=a2√34
k2√34⇒ k10=2⋅f(x)⇒ k31=2⋅g(x)
x=y2⇒ f(x)=√x2y2=3−x⇒ g(x)=√3−x2
V=∫10(2⋅f(x))2⋅√34dx+∫31(2⋅g(x))2⋅√34dx
V=∫10(2⋅√x)2⋅√34dx+∫31(2⋅√3−x2)2⋅√34dx
V=√3(∫10xdx+12∫31(3−x)dx)
V=√3⋅(|x22|10+|3x−x22|31)V=√3⋅(12+9−92−(3−12)
V=5⋅√32=4.33
!