Questions   
Sort: 
 #10
avatar+287 
+3

Everything depends on this given assumption
\[
    2f(a^2+b^2) = [f(a)]^2 + [f(b)]^2\qquad\qquad(*)
\]
for all nonnegative integers $a$ and $b$.

Letting $b=0$ in $(*)$ we have another general formula
\[
    2f(a^2) = f(a)^2+f(0)^2\qquad\qquad\qquad(**)
\]
for all nonnegative integer $a$.

Letting $a=b=0$ in $(*)$ we get 
\[
    2f(0) = 2f(0)^2.
\]
Solving for $f(0)$ we get $f(0) = 0, 1$.

Letting $a=1$ in $(**)$ we get 
\[
    2f(1)=f(1)^2+f(0)^2.
\]
When $f(0)=0$, we solve for $f(1)$ to get $f(1) = 0, 2$;
when $f(0)=1$, we solve for $f(1)$ to get $f(1)=1$.

The current situation is like this


   | f(0) | 0 | 0 | 1 |
   | f(1) | 0 | 2 | 1 |

 

Setting $a = b = 1$ in $(*)$ we get 
\[
    f(2) = f(1)^2
\]
This implies that $f(2) = 0$ when $f(1) = 0$;
$f(2) = 4$ when $f(1) = 2$;
and $f(2) = 1$ when $f(1) = 1$;

The current situation is like this

 
   | f(0) | 0 | 0 | 1 |
   | f(1) | 0 | 2 | 1 |
   | f(2) | 0 | 4 | 1 |
 

Setting $a=2$ and $b=1$ in $(*)$ we have
\[
    2f(5) = f(2)^2 + f(1)^2
\]

When $f(1)=f(2)=0$, we solve for $f(5)$ to get $f(5) = 0$.
When $f(1)=2$ and $f(2)=4$, we solve for $f(5)$ to get $f(5)=10$.
When $f(1)=f(2)=1$, we solve for $f(5)$ to get $f(5)= 1$.

The current situation is like this


   | f(0) | 0 |   0 | 1 |
   | f(1) | 0 |   2 | 1 |
   | f(2) | 0 |   4 | 1 |
   | f(5) | 0 | 10 | 1 |
 

Letting $a=5$ in $(**)$ we get
\[
    2f(25) = f(5)^2 + f(0)^2
\]

When $f(0)=f(5)=0$, we solve for $f(25)$ to get $f(25) = 0$.
When $f(0)=0$ and $f(5)=10$, we solve for $f(25)$ to get $f(25)=50$.
When $f(0)=f(5)=1$, we solve for $f(25)$ to get $f(25)= 1$.

The final situation is like this

 

   | f(0)  | 0 |   0 |  1 |
   | f(1)  | 0 |   2 |  1 |
   | f(2)  | 0 |   4 |  1 |
   | f(5)  | 0 | 10 |  1 |
   | f(25) | 0 | 50 | 1 |

 

So $n = 3$ and $s=0+50+1=51$, and $n\times s = 3\times 51 = 153$.
 

Jun 18, 2021

2 Online Users

avatar