(b) There are 108/3 = 36 unique sets.
(c) For the first card, there are 3 ways to choose the number. For the second, there 2 choices, and then there is only 1 choice. So there are 3*2*1 = 6 ways that the numbers can be chosen. Doing this for the other attributes, we get 6*6*24*6 ways. But the order of cards doesn't matter in a set, so we divide by 3!: 6*6*24*6/3! = 864. So there are 864 sets for part (c).
(d) The cards can have the same number, color, shape, or shading. If all the colors are the same, then there are 6*24*6/3! = 144 sets. If all the numbers are the same, then there are 144 sets. We get the same number for shape and shading, so there are 4*144 = 576 sets for part (d).
(e) We need to choose two of the attributes. There are C(4,2) = 6 ways of choosing two attributes. For each of these two attributes, there are 3 options. For the other two attributes, there are 3 ways of assigning the choices, so there are 6*3*3*3*3 = 486 sets for part (e)
(f) First we choose which attributes are the same. There are C(4,3) = 4 ways of choosing which attributes are the same. There are then 3*3*4 = 36 ways to assign which is which for each of these three attributes, and there are 4 ways to assign the choices for the fourth attribute, so there are 4*36*4 = 576 sets for part (f).