Questions   
Sort: 
 #1
avatar+171 
+5

oh lord, this is hard to swallow 

 

oh well, lets start shall we -- pay attention to every step:

 

 

$\Huge\text{NOTE:}$  this website kind of screwed up the colouring i do not know why but check this link for a more accurate version: http://mathb.in/59340

 

---------------------------------------------------------------------------------------------------------------------------------------------------

 


$ \color{lightskyblue}{\sqrt{60x}} \sqrt{12x}\sqrt{63x}\sqrt{42x} $

 

$  \color{lightskyblue}{\sqrt{4(15)x}}\sqrt{12x}\sqrt{63x}\sqrt{42x}  $

 

$ \color{lightskyblue}{ \sqrt{2^2(15)x}}\sqrt{12x}\sqrt{63x}\sqrt{42x}   $

 

$   \color{lightskyblue}{2\sqrt{(15)x}}\sqrt{12x}\sqrt{63x}\sqrt{42x}    $

 

now lets do the second one: $ 2\sqrt{(15)x}   \color{tomato}{\sqrt{12x}}\sqrt{63x}\sqrt{42x} $

 

$ 2\sqrt{(15)x}   \color{tomato}{ \sqrt{4(3)x}}\sqrt{63x}\sqrt{42x}  $

 

$ 2\sqrt{(15)x}  \color{tomato}{ \sqrt{2^2(3)x}}\sqrt{63x}\sqrt{42x}    $

 

$   2\sqrt{(15)x}   \color{tomato}{ 2 \sqrt{(3)x}}\sqrt{63x}\sqrt{42x}   $

 

now lets do the third one: $  2\sqrt{(15)x}2 \sqrt{(3)x}  \color{teal}{\sqrt{63x}} \sqrt{42x}     $

 

$   2\sqrt{(15)x}2 \sqrt{(3)x}  \color{teal}{\sqrt{9(7)x}} \sqrt{42x}    $

 

$   2\sqrt{(15)x}2 \sqrt{(3)x}  \color{teal}{\sqrt{3^3(7)x}} \sqrt{42x}    $

 

$   2\sqrt{(15)x}2 \sqrt{(3)x}  \color{teal}{(3\sqrt{(7)x}) } \sqrt{42x}    $

 

We are left with

 

$ 2\sqrt{(15)x}2 \sqrt{(3)x} (3\sqrt{(7)x})  \sqrt{42x}  $ 

 

firstly lets multiply the first two terms:

 

$ \color{darkorange}{2\sqrt{(15)x}2 \sqrt{(3)x}} (3\sqrt{(7)x})  \sqrt{42x}  $ 

 

$ \color{darkorange}{4\sqrt{(15)x} \sqrt{(3)x}} (3\sqrt{(7)x})  \sqrt{42x}  $

 

$ \color{darkorange}{4\sqrt{3x(15x)}} (3\sqrt{(7)x})  \sqrt{42x}  $

 

$ \color{darkorange}{4\sqrt{45x^2}} (3\sqrt{(7)x})  \sqrt{42x}  $

 

$ \color{darkorange}{4\sqrt{9(5)x^2}} (3\sqrt{(7)x}) \sqrt{42x}  $

 

$ \color{darkorange}{4\sqrt{3^2(5)x^2}} (3\sqrt{(7)x}) \sqrt{42x} \Leftrightarrow \color{darkorange}{4\sqrt{3^2 \cdot x^2(5)}} (3\sqrt{(7)x}) \sqrt{42x}  $

 

$\color{darkorange}{4\sqrt{(3x)^2(5)}} (3\sqrt{(7)x}) \sqrt{42x}  $

 

$\color{darkorange}{4[(3x)\sqrt{5}]} (3\sqrt{(7)x}) \sqrt{42x}  $

 

$  \color{darkorange}{12x\sqrt{5}} (3\sqrt{(7)x}) \sqrt{42x}  $

 

now lets do work the $12x\sqrt{5} (3\sqrt{(7)x})$ :

 

$\color{mediumseagreen}{12x\sqrt{5} (3\sqrt{(7)x})} \sqrt{42x}$  

 

$\color{mediumseagreen}{36x\sqrt{7x\cdot 5} } \sqrt{42x}$

 

$\color{mediumseagreen}{36x\sqrt{35x} } \sqrt{42x}$

 

finally, we multiply them all together:

 

$\color{navy}{36x\sqrt{35x}  \sqrt{42x}}$

 

$\color{navy}{36x\sqrt{42x(35x)}}$

 

$\color{navy}{36x\sqrt{1470x^2}}$

 

$\color{navy}{36x\sqrt{(7x)^2 \cdot 30 }}$

 

$\color{navy}{36x(7x\sqrt{30})}$

 

$\color{navy}{36x\cdot x(7\sqrt{30})}$


$\color{navy}{36x^2(7\sqrt{30})}$

 

$\color{navy}{252x^2(\sqrt{30})}$

 

or just 

$\color{navy}{252x^2\sqrt{30}}$

 

$\color{navy}{\left(6\sqrt{7}\right)x^2\sqrt{30}}$

 

$\color{navy}{6\sqrt{7\cdot \:30}x^2}$
 
$ \boxed{\color{navy}{ 6\sqrt{210}x^2}} $ 

 

can you do anything else to this? i dont think so.
 

Jul 3, 2021

2 Online Users

avatar