Questions   
Sort: 
Apr 29, 2023
 #2
avatar
0

 

Pearl writes down seven consecutive integers, and adds them up. The sum of the integers is equal to 21 times the largest of the seven integers. What is the smallest integer that Pearl wrote down?  

 

 

Since the integers are consecutive,

each integer's value will be one larger

than the integer before it  . 

 

Call the first integer "x" 

 

The seven integers are  (x) + (x+1) + (x+2) + (x+3) + (x+4) + (x+5) + (x+6)  

 

and their sum is 7x + 21  

 

We want this to be 21 times the largest number  

 

so                                           7x + 21  =  21 times (x+6)  

 

                                               7x + 21  =  21x + 126 

 

Collect like terms                    7x  – 21x  =  126 – 21  

 

                                                     – 14x  =  105 

 

                                                            x  =  –7.5   

 

Check answer by plugging into the original proposition      

 

                (x)   +    (x+1)    +    (x+2)    +    (x+3)    +    (x+4)    +    (x+5)    +    (x+6)   

 

              (–7.5) + (–7.5+1) + (–7.5+2) + (–7.5+3) + (–7.5+4) + (–7.5+5) + (–7.5+6)   

 

              (–7.5)  +  (–6.5)   +   (–5.5)   +   (–4.5)   +   (–3.5)   +   (–2.5)   +   (–1.5)   

 

Add all those together and the sum is       –31.5  

Multiply 21 times –1.5 and the product is   –31.5       so the answer checks out good    

.

Apr 29, 2023
 #1
avatar
-1

To find the highest point of the parabolic arch, we need to find the value of $t$ that maximizes $y.$ Since the coefficient of $t^2$ is negative, the highest point occurs when the quadratic term is zero, that is, when $t = \frac{v \sin \theta}{g}.$ Substituting this value of $t$ into the equation for $y,$ we get:

$y_{\text{max}} = \frac{v^2 \sin^2 \theta}{2g}$

This expression gives the maximum height of the projectile for a given angle $\theta.$ Note that the height only depends on the square of the initial velocity and the sine of the angle, not on the actual value of the velocity or the angle itself.

To trace out the curve of maximum heights as $\theta$ varies, we need to find the maximum height for each angle. We can express this maximum height as a function of $\theta$:

$f(\theta) = \frac{v^2 \sin^2 \theta}{2g}$

The curve of maximum heights is then given by the graph of $f(\theta)$ over the interval $0^\circ \leq \theta \leq 180^\circ.$ Note that $f(\theta)$ is a symmetric function with respect to $\theta = 90^\circ,$ since $\sin^2 \theta = \sin^2 (180^\circ - \theta).$ Therefore, we can restrict our attention to the interval $0^\circ \leq \theta \leq 90^\circ.$

To find the area enclosed by the curve of maximum heights, we need to integrate $f(\theta)$ over the interval $0^\circ \leq \theta \leq 90^\circ.$

$\begin{aligned} \text{Area} &= \int_{0^\circ}^{90^\circ} f(\theta) d\theta \ &= \int_{0^\circ}^{90^\circ} \frac{v^2 \sin^2 \theta}{2g} d\theta \ &= \frac{v^2}{2g} \int_{0^\circ}^{90^\circ} \sin^2 \theta d\theta \ &= \frac{v^2}{4g} \int_{0^\circ}^{180^\circ} \sin^2 \theta d\theta \ &= \frac{v^2}{4g} \int_{0^\circ}^{180^\circ} \frac{1 - \cos 2\theta}{2} d\theta \ &= \frac{v^2}{8g} \int_{0^\circ}^{360^\circ} (1 - \cos 2\theta) d\theta \ &= \frac{v^2}{8g} \left[\theta - \frac{1}{2} \sin 2\theta \right]_{0^\circ}^{360^\circ} \ &= \frac{v^2}{8g} \cdot 360^\circ \ &= \frac{45}{\pi^2} \cdot \frac{v^4}{g^2} \end{aligned}$

where we have used the half-angle formula $\sin^2 \theta = \frac{1 - \cos 2\theta}{2}$ and integrated by parts to evaluate $\int \cos 2\theta d\theta.$

Therefore, $c = \frac{45}{\pi^2}$

.
Apr 29, 2023
 #1
avatar
-3

We can use the Laplace expansion to evaluate the determinant of the given matrix. Expanding along the third column, we get:

| [[sin^2 A, cot A], [sin^2 B, cot B]] sin^2 C - [[sin^2 A, cot A], [sin^2 C, cot C]] sin^2 B + [[sin^2 B, cot B], [sin^2 C, cot C]] sin^2 A

where |M| denotes the determinant of matrix M. Note that the first term is the determinant of the 2x2 matrix [[sin^2 A, cot A], [sin^2 B, cot B]], which we can evaluate using the formula for the determinant of a 2x2 matrix:

[[sin^2 A, cot A], [sin^2 B, cot B]] = sin^2 A cot B - sin^2 B cot A

For the second and third terms, we can use the formula for the determinant of a 3x3 matrix:

[[a, b, c], [d, e, f], [g, h, i]] = a(ei - fh) - b(di - fg) + c(dh - eg)

Substituting the appropriate values, we get:

[[sin^2 A, cot A], [sin^2 C, cot C]] = sin^2 A cot C - sin^2 C cot A

[[sin^2 B, cot B], [sin^2 C, cot C]] = sin^2 B cot C - sin^2 C cot B

Substituting these values into our Laplace expansion, we get:

| [[sin^2 A, cot A], [sin^2 B, cot B], [sin^2 C, cot C]] = (sin^2 A cot B - sin^2 B cot A) sin^2 C

(sin^2 A cot C - sin^2 C cot A) sin^2 B

(sin^2 B cot C - sin^2 C cot B) sin^2 A

Factoring out sin^2 A, sin^2 B, and sin^2 C, respectively, we get:

| [[sin^2 A, cot A], [sin^2 B, cot B], [sin^2 C, cot C]] = sin^2 A (cot B sin^2 C - cot C sin^2 B)

sin^2 B (cot A sin^2 C - cot C sin^2 A)

sin^2 C (cot A sin^2 B - cot B sin^2 A)

Using the identity cot x = cos x / sin x, we can simplify the coefficients of cot A, cot B, and cot C:

cot B sin^2 C - cot C sin^2 B = cos B sin C - cos C sin B = sin(B - C) cot A sin^2 C - cot C sin^2 A = cos A sin C - cos C sin A = sin(A - C) cot A sin^2 B - cot B sin^2 A = cos A sin B - cos B sin A = sin(A - B)

Substituting these values, we get:

| [[sin^2 A, cot A], [sin^2 B, cot B], [sin^2 C, cot C]] = sin^2 A sin(B - C) - sin^2 B sin(A - C) + sin^2 C sin(A - B = 1.

Therefore, the determinant simplifies to 1.

Apr 29, 2023

0 Online Users