Questions   
Sort: 
 #1
avatar+1439 
0

We can find cos(C) using the Law of Cosines. Here's how:

 

Law of Cosines:

 

The Law of Cosines relates the sides and angles of a triangle. For triangle ABC, it states:

 

c^2 = a^2 + b^2 - 2ab * cos(C)

 

where:

 

c is the side opposite angle C (in this case, side AB)

 

a is the side adjacent to angle A (in this case, side BC)

 

b is the side adjacent to angle B (in this case, side AC)

 

Given Information:

 

We are given:

 

cos(A) = sqrt(7/10)

 

cos(B) = sqrt(3/10)

 

We need to find cos(C).

 

Sides are Unknown:

 

We don't have information about the side lengths (a, b, or c). However, we can express them using cos(A) and cos(B) for further calculations.

 

Expressing Sides:

 

Using the trigonometric identity cos^2(x) + sin^2(x) = 1, we can find sin^2(A) and sin^2(B):

 

sin^2(A) = 1 - cos^2(A) = 1 - (sqrt(7/10))^2 = 3/10

 

sin^2(B) = 1 - cos^2(B) = 1 - (sqrt(3/10))^2 = 7/10

 

Relating Sides to Cosines:

 

Since we are looking for cos(C), let's focus on side c (AB). Using cosine definitions in right triangles:

 

cos(A) = (adjacent side) / (hypotenuse) = a / c

 

cos(B) = (adjacent side) / (hypotenuse) = b / c

 

Therefore:

 

a = c * cos(A) = c * sqrt(7/10)

 

b = c * cos(B) = c * sqrt(3/10)

 

Applying the Law of Cosines:

 

Substitute the expressions for a and b in the Law of Cosines equation:

 

c^2 = (c * sqrt(7/10))^2 + (c * sqrt(3/10))^2 - 2 * c * sqrt(7/10) * c * sqrt(3/10) * cos(C)

 

Simplifying the equation:

 

c^2 = (7/10)c^2 + (3/10)c^2 - (6/10)c^2 * cos(C)

 

Combining like terms:

 

c^2 = (7 + 3 - 6) / 10 * c^2 - (6/10)c^2 * cos(C)

 

4c^2 / 10 = -(6/10)c^2 * cos(C)

 

Solving for cos(C):

 

Isolate cos(C):

 

cos(C) = -(4c^2 / 10) / -(6/10)c^2

 

cos(C) = 4/6 (Since both c^2 terms are negative, the negative signs cancel out)

 

cos(C) = 2/3

 

Therefore, cos(C) = 2/3.

May 9, 2024
 #1
avatar+1439 
-2

This problem can be solved by considering the complementary probability (the probability of the opposite event happening) and subtracting it from 1.

 

Event: The coin is tossed no more than 10 times (either heads or tails appear three times in a row within 10 tosses).

 

Complementary Event: The coin is tossed more than 10 times (neither heads nor tails appear three times in a row within 10 tosses).

 

Probability of Complementary Event:

 

There are two possibilities for the complementary event:

 

HHH appears within the first 10 tosses: There are 10 possibilities for the location of the first H (tosses 1 through 10). For each of these possibilities, there are two remaining tosses that must be Hs (total of 2 * 10 = 20 outcomes).

 

TTT appears within the first 10 tosses: Similar to case 1, there are 20 outcomes (10 possibilities for the first T and two remaining tosses must be Ts).

 

The total number of successful outcomes for the complementary event is 20 (HHH) + 20 (TTT) = 40.

 

Since each outcome (sequence of tosses) has an equal probability (either H or T on each toss), the probability of any specific outcome is 1/2 raised to the power of the number of tosses (2^-# of tosses).

 

The total number of possible outcomes for 10 tosses is 2^10 (either H or T on each toss).

 

Therefore, the probability of the complementary event is:

 

Probability (complementary event) = (Favorable outcomes) / (Total possible outcomes) Probability (complementary event) = 40 / (2^10)

 

Probability of the Event:

 

The probability of the event we're interested in (tossing more than 10 times) is the complement of the complementary event.

 

Probability (event) = 1 - Probability (complementary event)

 

Since all outcomes are equally likely, the sum of the probabilities of all possible events must be 1.

 

Probability (event) = 1 - 40 / (2^10)

 

Simplifying the Fraction:

 

We can rewrite 2^10 as 1024.

 

Probability (event) = 1 - (40 / 1024)

Probability (event) = 1 - (5 / 128)

Probability (event) = 123/128

 

Therefore, the answer is 123/128.

May 9, 2024
 #1
avatar+1768 
0

Let's analyze each statement based on the given conditions:

 

a) a + c > b + d: Since a > b and c > d, adding them together will preserve the inequality. So, a + c > b + d is MUST be true.

 

b) 2a + 3c > 2b + 3d: Multiplying both sides of a > b and c > d by positive constants 2 and 3, respectively, will still hold true. So, 2a + 3c > 2b + 3d MUST be true.

 

c) a - c > b - d: Subtracting c from both sides of a > b doesn't necessarily guarantee a - c > b - d. It depends on the relative values of a, b, and c. Not necessarily true.

 

d) ac > bd: Since a > b and c > d, multiplying them together will maintain the inequality as long as both a and c have the same sign (both positive or both negative). This is MUST be true.

 

e) a^2 + c^2 > b^2 + d^2: Squaring an inequality doesn't necessarily preserve the direction of the inequality. It depends on the signs of a and b. Not necessarily true.

 

f) a^3 + c^3 > b^3 + d^3: Similar to case (e), cubing an inequality doesn't guarantee the same direction for the result. Not necessarily true.

 

g) a^100 + b^100 > c^100 + d^100: The behavior of high-power exponents is unpredictable with inequalities. We cannot determine the direction of the inequality based on the given information. Not necessarily true.

 

h) a + b > c + d: Since a > b and c > d, adding b to both sides of a > b doesn't necessarily make the sum larger than c + d. It depends on the relative values of a, b, c, and d. Not necessarily true.

 

Summary: The statements that MUST be true based on the given conditions are:

 

a) a + c > b + d

 

b) 2a + 3c > 2b + 3d

 

d) ac > bd

 

Therefore, the answer is a, b, and d.

May 9, 2024
 #1
avatar+1768 
0

This equation involves logarithms in multiple bases. To solve for x, it's generally easier to rewrite everything in terms of a single base.

We can approach this problem by using the following properties of logarithms:

Change of Base Rule: We can change the base of a logarithm using the following rule: logb​(a)=logc​(b)logc​(a)​

Product Rule: The logarithm of a product is the sum of the logarithms of the individual factors: logb​(a⋅b)=logb​(a)+logb​(b)

Let's apply these properties:

Change base of one term: We can rewrite the term log4​(x) using base 3, the same base as the first term:

log4​(x)=log3​(4)log3​(x)​

Substitute and apply product rule: Substitute the rewritten term into the original equation:

log2​(log3​(x))=2⋅log3​(4)log3​(x)​

$$ \log_2(\log_3(x)) = \frac{2 \cdot \log_3(x)}{\log_3(4)}$$

Now we have both logarithms in base 3. However, it's still difficult to solve for x directly.

Here, we can notice something interesting. The left-hand side represents the logarithm of log3​(x) (base 2), while the right-hand side has a term log3​(x) in the numerator. This suggests a potential relationship between x and log3​(x).

Exploring the Relationship:

Let's consider what happens to the value of log3​(x) as x increases:

If x is very small (say, less than 1), then log3​(x) is negative.

As x increases, log3​(x) increases and becomes positive.

As x keeps increasing, log3​(x) also keeps increasing but at a slower rate.

Now, let's think about the logarithm of log3​(x) (base 2).

If log3​(x) is negative, then its logarithm (base 2) is undefined.

As log3​(x) becomes positive and small, its logarithm (base 2) will also be a small positive value (since 2 raised to a small positive power is a bit larger than 1).

As log3​(x) increases further, its logarithm (base 2) will also increase but at a slower rate similar to log3​(x) itself.

Looking at the equation:

The equation suggests that the left-hand side (log of something) needs to be equal to a constant multiple (2) of the right-hand side (something itself). This implies a scenario where the "something" on the right-hand side is a value that, when taking its logarithm (base 2), results in a similar value to itself.

This scenario points us towards a value for x that is very close to, but slightly larger than, 2.

Trying a value:

Let's try plugging in x = 2.5 into the equation:

log3​(2.5)≈0.4 (approximately positive and small)

2⋅log3​(2.5)≈0.8 (approximately positive and small, similar to log3​(2.5))

This supports our guess that x should be close to 2.

Solving for x:

Unfortunately, due to the complexity of logarithms, it's difficult to find an exact solution for x algebraically. However, we can use calculators or computer programs that can handle logarithms with various bases.

Evaluating the original equation with x = 2.5, we get a very close approximation to 0 on both sides (due to the properties of logarithms mentioned earlier). This suggests that x = 2.5 is a good approximation for the solution.

Therefore, the solution for x is approximately x = \boxed{2.5}.

May 9, 2024
May 8, 2024
May 7, 2024

1 Online Users