Questions   
Sort: 
 #2
avatar+118725 
0
Nov 3, 2014
 #1
avatar+118725 
+5
Nov 3, 2014
 #1
avatar+33666 
+5

(a) Net downward vertical force on block = mass*g - F*sin(θ)   or 54*9.8 - F*sin(25°) N

Resistive force = μ*(mass*g - F*sin(θ)) = 0.1*(54*9.8 - F*sin(25°) ) N

Hence, to get the block moving we must have F*cos(θ) = μ*(mass*g - F*sin(θ))

F = μ*mass*g/(cos(θ) + μ*sin(θ)) 

$${\mathtt{F}} = {\frac{{\mathtt{0.1}}{\mathtt{\,\times\,}}{\mathtt{54}}{\mathtt{\,\times\,}}{\mathtt{9.8}}}{\left(\underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{360^\circ}}}{{cos}}{\left({\mathtt{25}}^\circ\right)}{\mathtt{\,\small\textbf+\,}}{\mathtt{0.1}}{\mathtt{\,\times\,}}\underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{360^\circ}}}{{sin}}{\left({\mathtt{25}}^\circ\right)}\right)}} \Rightarrow {\mathtt{F}} = {\mathtt{55.789\: \!263\: \!395\: \!076\: \!610\: \!5}}$$

or F ≈ 55.8 N

 

(b) Net force horizontal force on the block once it is moving = F*cos(θ) - μk*(mass*g - F*sin(θ))

where μk is kinetic coefficient of friction.  This force equals mass*a, where a is acceleration, so:

mass*a = F*cos(θ) - μk*(mass*g - F*sin(θ))

a = F*(cos(θ) + μk*sin(θ))/mass - μk*g

$${\mathtt{a}} = {\frac{{\mathtt{55.789\: \!263\: \!395\: \!1}}{\mathtt{\,\times\,}}\left(\underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{360^\circ}}}{{cos}}{\left({\mathtt{25}}^\circ\right)}{\mathtt{\,\small\textbf+\,}}{\mathtt{0.03}}{\mathtt{\,\times\,}}\underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{360^\circ}}}{{sin}}{\left({\mathtt{25}}^\circ\right)}\right)}{{\mathtt{54}}}}{\mathtt{\,-\,}}{\mathtt{0.03}}{\mathtt{\,\times\,}}{\mathtt{9.8}} \Rightarrow {\mathtt{a}} = {\mathtt{0.655\: \!436\: \!494\: \!326\: \!533\: \!9}}$$

or a ≈ 0.655 m/s2

.

Nov 3, 2014
 #1
avatar+118725 
+5
Nov 3, 2014

1 Online Users