$$\\r=sqr(A/(2\pi)-rh)\\\\
r=\sqrt{\frac{70}{2\pi}-19r}\\\\
r^2=\frac{70}{2\pi}-19r\\\\
2\pi r^2=70-19*2\pi r\\\\
\pi r^2+19\pi r-35=0\\\\$$
$${\mathtt{\pi}}{\mathtt{\,\times\,}}{{\mathtt{r}}}^{{\mathtt{2}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{19}}{\mathtt{\,\times\,}}{\mathtt{\pi}}{\mathtt{\,\times\,}}{\mathtt{r}}{\mathtt{\,-\,}}{\mathtt{35}} = {\mathtt{0}} \Rightarrow \left\{ \begin{array}{l}{\mathtt{r}} = {\mathtt{\,-\,}}{\frac{\left({\sqrt{{\mathtt{361}}{\mathtt{\,\times\,}}{{\mathtt{\pi}}}^{{\mathtt{2}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{140}}{\mathtt{\,\times\,}}{\mathtt{\pi}}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{19}}{\mathtt{\,\times\,}}{\mathtt{\pi}}\right)}{\left({\mathtt{2}}{\mathtt{\,\times\,}}{\mathtt{\pi}}\right)}}\\
{\mathtt{r}} = {\frac{\left({\sqrt{{\mathtt{361}}{\mathtt{\,\times\,}}{{\mathtt{\pi}}}^{{\mathtt{2}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{140}}{\mathtt{\,\times\,}}{\mathtt{\pi}}}}{\mathtt{\,-\,}}{\mathtt{19}}{\mathtt{\,\times\,}}{\mathtt{\pi}}\right)}{\left({\mathtt{2}}{\mathtt{\,\times\,}}{\mathtt{\pi}}\right)}}\\
\end{array} \right\} \Rightarrow \left\{ \begin{array}{l}{\mathtt{r}} = -{\mathtt{19.569\: \!302\: \!161\: \!343\: \!291}}\\
{\mathtt{r}} = {\mathtt{0.569\: \!302\: \!161\: \!343\: \!291}}\\
\end{array} \right\}$$
SO
$$r\approx 0.57\; inches$$
.