Questions   
Sort: 
 #2
avatar
+5

 

From wikipedia:

(Limited) extension to negative heights[edit]

In order to preserve the original rule:

 {^{(k+1)}a} = a^{({^{k}a})}

for negative values of k we must use the recursive relation:

 {^{k}a} = \log_a \left( {^{(k+1)}a} \right)

Thus:

 {}^{(-1)}a = \log_{a} \left( {}^{0}a \right) = \log_{a} 1 = 0

However smaller negative values cannot be well defined in this way because

 {}^{(-2)}a = \log_{a} \left( {}^{-1}a \right) = \log_{a} 0

which is not well defined.

Note further that for  n = 1  any definition of \,\! {^{(-1)}1}  is consistent with the rule because

 {^{0}1} = 1 = 1^n  for any  \,\! n = {^{(-1)}1} .
Dec 13, 2014
 #3
avatar+7188 
+5
Dec 13, 2014
 #2
avatar+130511 
0
Dec 13, 2014
 #5
avatar+130511 
+10

Another way to do this (more difficult) is to use the  Secant-Tangent Theorem

Note, flflvm97, the line y = x + 3 doesn't actually intersect this circle, but the line y = x + √2 does.....

Call the y coordinate of R, "y".....using symmetry the distance between the two points where the line x = .75 intersects the circle = 2y

And using y = x+ √2, the x coordinate of the intercept of the line and the circle =

x^2 + (x + √2)^2 = 1

x^2 + x^2 + 2√2x + 2 = 1

2x^2 + 2√2x + 1 = 0

2x^2 + √8x + 1 = 0    and using the quad formula x = - √8/4  = -1/√2

And using y = x + √2,   (-1/ √2)^2 + y^2 = 1  so  y^2  = 1/2   and y = the positive root= 1/ √2

So the intersection of the line and the circle is ( -1/√2, 1/√2)

And when x = .75, the y coordinate of this point on the line is  (.75 + √2)

And using the Secant-Tangent Theorem ,we have

( .75 + √2 + y)*(.75 + √2 - y) = (.75 + 1/ √2)^2 + (.75 + √2 - 1/ √2)^2

( .75 + √2 + y)*(.75 + √2 - y) = (.75 + 1/ √2)^2 + (.75 +  1/ √2)^2

(.75 + √2)^2 - y^2  =  2 (.75 + 1/ √2)^2

So

y^2  = (.75 + √2)^2 - 2 (.75 + 1/ √2)^2

And y = ±√((.75 + √2)^2 - 2 (.75 + 1/ √2)^2) = ±.661438 = ±√(7)/4    

And choose the positive root.....and this is the y coordinate of "R".....so R = (3/4,  √(7)/4)

(I told you it was more difficult !!!)

 

Dec 13, 2014
 #4
avatar
0
Dec 13, 2014
 #1
avatar+625 
+6
Dec 13, 2014
Dec 12, 2014
 #4
avatar+130511 
0
Dec 12, 2014
 #1
avatar+130511 
+5
Dec 12, 2014
 #1
avatar
0
Dec 12, 2014

1 Online Users

avatar