Questions   
Sort: 
 #1
avatar+130548 
+10

Let a_1a_2, . . . , a_{10} be an arithmetic sequence. If a_1 + a_3 + a_5 + a_7 + a_9 = 17 and a_2 + a_4 + a_6 + a_8 + a_{10} = 15, then find a_1.

Subtracting the second sum from the first, we have

(a2 - a1) + (a4 - a3) + (a6 - a5) + (a8 - a7) + (a10 - a9) = -2   or

  d           +      d       +      d       +     d        +      d        =  -2   or

5d = -2     →   d = -2/5

Also, the sum of the arithmetic series is given by

S = (10/2)(a1 + a10) = 5(a1 + a10) = 32     divide both sides by 5

So

a1 + a10 = 32/5 →  a10 = 32/5 - a1  ( 1)

And the last term is given by

a10 = a1 + d(9)    (2)

Therefore, setting (1) = (2), we have

32/5 - a1 = a1 + d(9)     ... solve for a1

(32/5 -2a1) = d(9)

32/5 -2a1 = (-2/5)(9) = -18/5  

32/5 + 18/5 = 2a1

2a1 = 50/5

a1 = 5

And a10=  32/5 - a1 =  32/5 - 5 = 1.4

Proof

a1 + a3 + a5 + a7 + a9  = 5 + 4.2 + 3.4 + 2.6 + 1.8 = 17

And since each of the other 5 terms  is (2/5) less than it's preceding term.....

[17 - 5(2/5)]  = [17 - 2] = 15  = the sum of the terms with even subscripts

 

Jan 18, 2015
Jan 17, 2015
 #1
avatar
0
Jan 17, 2015

2 Online Users

avatar