Another for Mellie
In how many ways can we distribute 13 pieces of identical candy to 5 kids, if the two youngest kids are twins and insist on receiving an equal number of pieces?
Ok lets start with a different assumption this time. Lets assume that every child gets at least one peice.
That means that 3 peices are gone to the elder 3 immediately. Which means the most the little ones can get is 5 peices each
twins get 5 each 1 way
twins get 4 each, 5 peices left for 3 children $${\left({\frac{({\mathtt{5}}{\mathtt{\,\small\textbf+\,}}{\mathtt{3}}{\mathtt{\,-\,}}{\mathtt{1}}){!}}{{\mathtt{5}}{!}{\mathtt{\,\times\,}}({\mathtt{5}}{\mathtt{\,\small\textbf+\,}}{\mathtt{3}}{\mathtt{\,-\,}}{\mathtt{1}}{\mathtt{\,-\,}}{\mathtt{5}}){!}}}\right)} = {\mathtt{21}}$$ ways
twins get 3 each 7 left for 3 children $${\left({\frac{({\mathtt{7}}{\mathtt{\,\small\textbf+\,}}{\mathtt{3}}{\mathtt{\,-\,}}{\mathtt{1}}){!}}{{\mathtt{7}}{!}{\mathtt{\,\times\,}}({\mathtt{7}}{\mathtt{\,\small\textbf+\,}}{\mathtt{3}}{\mathtt{\,-\,}}{\mathtt{1}}{\mathtt{\,-\,}}{\mathtt{7}}){!}}}\right)} = {\mathtt{36}}$$ ways
twins get 2 each 9 left for the 3 children $${\left({\frac{({\mathtt{9}}{\mathtt{\,\small\textbf+\,}}{\mathtt{3}}{\mathtt{\,-\,}}{\mathtt{1}}){!}}{{\mathtt{9}}{!}{\mathtt{\,\times\,}}({\mathtt{9}}{\mathtt{\,\small\textbf+\,}}{\mathtt{3}}{\mathtt{\,-\,}}{\mathtt{1}}{\mathtt{\,-\,}}{\mathtt{9}}){!}}}\right)} = {\mathtt{55}}$$ ways
twins get 1 each 11 left for the 3 older children $${\left({\frac{({\mathtt{11}}{\mathtt{\,\small\textbf+\,}}{\mathtt{3}}{\mathtt{\,-\,}}{\mathtt{1}}){!}}{{\mathtt{11}}{!}{\mathtt{\,\times\,}}({\mathtt{11}}{\mathtt{\,\small\textbf+\,}}{\mathtt{3}}{\mathtt{\,-\,}}{\mathtt{1}}{\mathtt{\,-\,}}{\mathtt{11}}){!}}}\right)} = {\mathtt{78}}$$
$${\mathtt{1}}{\mathtt{\,\small\textbf+\,}}{\mathtt{21}}{\mathtt{\,\small\textbf+\,}}{\mathtt{36}}{\mathtt{\,\small\textbf+\,}}{\mathtt{55}}{\mathtt{\,\small\textbf+\,}}{\mathtt{78}} = {\mathtt{191}}$$ ways
-----------------------------------------------------------------------------------------------------------------
I still think my original answer might have been correct only it assumed some children might miss out altogether. 