Here is a method to find out exact value of cos72 degrees.My idea is come from C.F.Gauss.
let cos(a) =2pi/5=x
sin(a)=-sin(2kPi-a) if k=1
sin(a)=-sin(2pi-a)=-sin(5a-a)=-sin4a=-2sin(2a)cos(2a)=-4sin(a)cos(a)cos(2a)
because -4sin(a) equal 0,so divide the equation by -4sin(a)
simplify we have -1/4=cos(a)cos(2a)
-1/4=1/2*[cos(a+2a)+cos(a-2a)]
-1/2=cos3a+cos(-a)
because cos(3a)=cos(-3a)=cos(2kpi-3a),when k=1,we have cos(3a)=cos(5a-3a)=cos(2a),and cos(-a)=cos(a)
so -1/2=cos3a+cos(-a) $$\Rightarrow$$ -1/2=cos(2a)+cos(a)
remember,I setted up cos(a)=x at the start
so cos(2a)=cos^2(a)-sin^2(a)=cos^2(a)-[1-cos^2(a)]=2cos^2(a)-1=2x^2-1
change the equation -1/2=cos(2a)+cos(a) to -1/2=2x^2-1+x$$\Rightarrow$$-1=4x^2+2x-2$$\Rightarrow$$0=4x^2+2x-1
ax^2+bx+c=0 a=4 b=2 c=-1 let x1 and x2 are the two soloutionof the equation
x1=[-b+(b^2-4ac)^1/2]/2a=[-2+(2^2-4*4(-1)^1/2]/(4*2)=[-2+20^(1/2)]/8=[-1+5^(1/2)]/4
x2=[-b-(b^2-4ac)^1/2]/2a=[-2-(2^2-4*4(-1)^1/2]/(4*2)=[-2-20^(1/2)]/8=[-1-5^(1/2)]/4
Beacause x=cos(a)=cos 72degrees>0,so cos 72 degrees=-1/4+5^(1/2)/4