Questions   
Sort: 
 #3
avatar+130511 
+18

ab + a + b = 524   →   b(1 + a)  =  [524 - a]    →   b =  [524 - a] / [ 1 + a]

 

bc + b + c =  146   →   [524 - a] / [ 1 + a]c +  [524 - a] / [ 1 + a] + c = 146   →

c (  [524 - a] / [ 1 + a] + 1 )  =  146 -  [524 - a] / [ 1 + a]    →

c (  [ 1 + a + 524 -  a] / [ 1 + a]  =  ( [ 146 + 146a - 524 + a] / [1 + a]     →

c (525)   =  (147a - 378)     →   c   =  (147a - 378)/ (525) 

 

cd + c + d   =  104    →    (147a - 378)/ (525)d  +  (147a - 378)/ (525) + d = 104     →

d( [ 147a - 378]/ (525)  + 1 )  =  104 -  (147a - 378)/ (525)    →

d ( 525 - 378 + 147a) / (525)  =  (54600 + 378  - 147a) / (525)    →

d (147 + 147a) =  (54978 - 147a)   →   147d (1 + a) =  (54978 - 147a)   →

d (1 + a)  = (374 - a)  →   d =   (374 - a) / (1 +a)

 

Therefore

abcd =  8! = 40320

a*  [524 - a] / [ 1 + a]  *  (147a - 378)/ (525) * (374 - a) / (1 +a)  = 40320 

a * (524 -a) (147a - 378)(374 - a)  = 40320 (525) (1 + a)^2   ...  simplify

147a^4 - 132384a^3 + 29147916a^2 -74078928a    =  40320 (525)(1 + a)^2

21a( 7a^3 - 6304a^2 + 1387996a - 3527568) = 40320 (525)(1 + a)^2

a ( 7a^3 - 6304a^2 + 1387996a - 3527568) = 40320(25)(1 + a)^2

7a^4 - 6304a^3 + 1387996a^2 - 3527568a = 1008000a^2 + 2016000a + 1008000

7a^4 - 6304a^3 + 379996a^2 - 5543568a - 1008000 = 0   factor

(a - 24) (7a^3 -6136a^2 +232732a + 42000)   = 0

a = 24  is the only integer solution

b =  [524 - 24] / [ 1 + 24]  = 500/25 = 20

c =  (147(24) - 378)/ (525) = 6

d =  (374 - 24) / (1 +24)  = 350 / 25  = 14

 

And  24 * 20 * 6 * 14 =  40320

 

And a - d = 24 - 14  = 10

 

 

  

Jul 8, 2015
 #2
avatar+26400 
+15

Four positive integers $a$$b$$c$, and $d$ satisfy
\begin{align*} ab + a + b &= 524, \\ bc + b + c &= 146, \\ cd + c + d &= 104, \\ \end{align*}
and $abcd=8!$.

 

I. We calculate a:

$$\small{\text{$
\begin{array}{lrcl}
(1) & ab+a+b &=& 524 \\\\
& b(1+a)+a &=& 524\\\\
& b &=& \dfrac{524-a} {1+a} \\\\
(2) & bc + b + c &=& 146 \\\\
& b(1+c)+c &=& 146 \\\\
& b &=& \dfrac{146-c}{1+c}\\\\
\\
\hline
\\
(1) = (2) & b = \dfrac{524-a} {1+a} &=& \dfrac{146-c}{1+c}\\\\
& \dfrac{524-a} {1+a} &=& \dfrac{146-c}{1+c}\\\\
& (1+c)(524-a) &=& (1+a)(146-c)\\\\
& (524-a)+c(524-a) &=& 146(1+a)-c(1+a)\\\\
& c(524-a +1+a) &=& 146(1+a)-(524-a)\\\\
& c\cdot 525 &=& 146(1+a)-524+a\\\\
& c\cdot 525 &=& 146 +146a-524+a\\\\
& c\cdot 525 &=& -378+147a\\\\
& c\cdot 525 &=& -378+147a\\\\
& \mathbf{c }& \mathbf{=}& \mathbf{ -0.72 + 0.28a } \qquad | \qquad \cdot 25\\\\
& \mathbf{25c }& \mathbf{=}& \mathbf{ -18+ 7a } \\\\
& \mathbf{-25c+7a }& \mathbf{=}& \mathbf{ 18 }
\end{array}
$}}$$

 

First we have find the solution for -25c + 7a = -1. And then we can multiply by (-18)

There is only a solution when gcd( -25,7) = -1 or in other words -25 and 7 are relatively prime.

(gcd = greatest common divisor)

 

Using the Euclidian algorithm to calcutate gcd(-25,7)

$$\small{\begin{array}{|r|r|r|r|}
\hline&&&\\
& & q& r \\
\hline &&&\\
-25 & 7 & -3 & -4 \\
7 & -4 & -1 & 3 \\
-4 & 3 & -1 & \textcolor[rgb]{1,0,0}{-1} \\
3 & -1 & -3 & 0 \\
&&&\\
\hline\end{array}}$$

 

The greatest common divisor gcd(-25,7) $$\textcolor[rgb]{1,0,0}{=-1}$$

 

Using Extended Euclidean algorithm to calculate the first solution

  $$\small{\begin{array}{|r|r|r|r||r|r|}
\hline&&&&&\\
& & q& r &c&a\\
\hline &&&&&\\
-25 & 7 & -3 & -4 & \textcolor[rgb]{1,0,0}{2} & 1-(-3)(2) = \textcolor[rgb]{1,0,0}{7}\\
7 & -4 & -1 & 3 & 1 & 1 -(-1)\cdot 1 = 2\\
-4 & 3 & -1 & -1 & 1 & 0 - (-1)\cdot 1 = 1 \\
3 & -1 & -3 & 0 & 0 & 0\cdot 3 -1 = 1\\
&&&&&\\
\hline\end{array}}$$
 
The first solution $$a_0$$ and $$c_0$$: -25c + 7a = -1
 
$$\small{\text{$
\begin{array}{rcl}
-25(2) + 7(7) &=& -1 \qquad | \quad \cdot(-18) \\
-25[2\cdot (-18) ] + 7 [7\cdot (-18) ] &=& 18 \\
-25\cdot (-36) + 7 \cdot (-126) &=& 18 \\
\end{array}
$}}$$
 
$$\small{\text{ The first solution is $ (-36,-126) \qquad -25 \cdot (\textcolor[rgb]{1,0,0}{ -36} ) + 7 \cdot (\textcolor[rgb]{1,0,0}{-126}) = 1 $}}\\\\$$
 

Next positive solution:

$$\small{\text{$
\begin{array}{lcl}
\boxed{
C\cdot c_0 + A \cdot a_0 = -1 }\\\\
\mathrm{First~ solution~~} (c_0,~ a_0)\\
\mathrm{All~ solutions~~} \left(c_0+\dfrac{z\cdot A}{ gcd(C,A) } ,~ a_0 - \dfrac{z\cdot C}{ gcd(C,A) }\right)\\
\end{array}
$}}\\\\$$

 

 $$\small{\text{$
\begin{array}{lcl} \boxed{-25\cdot c + 7 \cdot a = 18 }\\\\
\mathrm{First~ solution~~} (c_0=-36,~ a_0=-126)\\
\mathrm{All~ solutions~~} \left(-36-\dfrac{z\cdot 7}{ -1 } ,~ -126 + \dfrac{z\cdot (-25) }{ -1 }\right)\\
\end{array}$}}\\\\$$

we have:

$$\small{\text{$
\begin{array}{lcl} \left\{~\left(~ -36 + 7\cdot z,~ -126 +25\cdot z\right)~|~z \in Z ~ \right\} \\
\end{array} $}}$$

 

c = -36+7*6 = 6

a = -126 + 25*6 = 24

 

$$\small{\text{$
\begin{array}{lcl}
b &=& \dfrac{524-a} {1+a} \\\\
b &=& \dfrac{524-24} {1+24} \\\\
b &=& \dfrac{500} {25} \\\\
\mathbf{b} &\mathbf{=}& \mathbf{20}
\end{array}
$}}$$

 

$$\small{\text{$
\begin{array}{lcl}
cd+c+d &=& 104\\\\
d &=& \dfrac{104-c} {1+c} \\\\
d &=& \dfrac{104-6} {1+6} \\\\
d &=& \dfrac{98} {7} \\\\
\mathbf{d} &\mathbf{=}& \mathbf{14}
\end{array}
$}}$$

 

check:

$$a\cdot b \cdot c \cdot d = 24 \cdot 20 \cdot 6 \cdot 14 = 8! = 40320 \qquad \text{ okay }$$

 

Jul 8, 2015
 #1
avatar+1832 
0
Jul 8, 2015
 #1
avatar+33661 
+5

Look in the Reference Material section: http://web2.0calc.com/questions/reference-material where there are several links to online statistical calculators that you could use.

Jul 8, 2015

2 Online Users

avatar