Questions   
Sort: 
 #2
avatar+26400 
+5

how many 4-digit numbers are there such that the thousands digit is equal to the sum of the other three digits?

 

 $$\small{\text{4-digit-number:~$abcd = a10^3+b10^2+c10+d\qquad a = b+c+d$}}
\\
\small{\text{$\Rightarrow (b+c+d)10^3+bcd_{10} < 10000$}}
\\
\small{\text{$\Rightarrow (b+c+d)10^3< 10000-bcd_{10}$}}
\\
\small{\text{$\Rightarrow (b+c+d)< \dfrac{10000-bcd_{10}}{ 10^3 }$}}
\\
\small{\text{$\Rightarrow (b+c+d)< 10 -
\underbrace{ \dfrac{ bcd_{10} }{ 1000 } }_{ 0\dots 0.999}
$}} \\\\
\small{\text{$\Rightarrow \boxed{\mathbf{(b+c+d)< 10} }
$}} \\\\$$

 

$$\small{\text{$b+c+d < 10 \qquad
\begin{array}{|r|c|l|}
\hline
(b=0) & c & d \\
\hline
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 2 \\
0 & 0 & 3 \\
0 & 0 & 4 \\
0 & 0 & 5 \\
0 & 0 & 6 \\
0 & 0 & 7 \\
0 & 0 & 8 \\
0 & 0 & 9 \\
\hline
0 & 1 & 0 \\
0 & 1 & 1 \\
0 & 1 & 2 \\
0 & 1 & 3 \\
0 & 1 & 4 \\
0 & 1 & 5 \\
0 & 1 & 6 \\
0 & 1 & 7 \\
0 & 1 & 8 \\
\hline
0 & 2 & 0 \\
0 & 2 & 1 \\
0 & 2 & 2 \\
0 & 2 & 3 \\
0 & 2 & 4 \\
0 & 2 & 5 \\
0 & 2 & 6 \\
0 & 2 & 7 \\
\hline
0 & 3 & 0 \\
0 & 3 & 1 \\
0 & 3 & 2 \\
0 & 3 & 3 \\
0 & 3 & 4 \\
0 & 3 & 5 \\
0 & 3 & 6 \\
\hline
0 & 4 & 0 \\
0 & 4 & 1 \\
0 & 4 & 2 \\
0 & 4 & 3 \\
0 & 4 & 4 \\
0 & 4 & 5 \\
\hline
0 & 5 & 0 \\
0 & 5 & 1 \\
0 & 5 & 2 \\
0 & 5 & 3 \\
0 & 5 & 4 \\
\hline
0 & 6 & 0 \\
0 & 6 & 1 \\
0 & 6 & 2 \\
0 & 6 & 3 \\
\hline
0 & 7 & 0 \\
0 & 7 & 1 \\
0 & 7 & 2 \\
\hline
0 & 8 & 0 \\
0 & 8 & 1 \\
\hline
0 & 9 & 0 \\
\hline
\end{array}
\qquad sum_{b=0} = 1+2+3+4+\dots +10
$}}$$

 

$$\small{\text{$
\begin{array}{lclcr}
b &\qquad & sum \\
\hline
0 & & 1+2+3+4+5+6+7+8+9 +10 & = & 55\\
1 & & 1+2+3+4+5+6+7+8 + 9 & = & 45\\
2 & & 1+2+3+4+5+6+7+ 8 & = & 36\\
3 & & 1+2+3+4+5+6+7 & = & 28\\
4 & & 1+2+3+4+5+ 6 & = & 21\\
5 & & 1+2+3+4+ 5 & = & 15\\
6 & & 1+2+3+4 & = & 10\\
7 & & 1+2+3 & = & 6\\
8 & & 1+2 & = & 3\\
9 & & 1 & = & 1\\
\hline
& & sum &=& 220
\end{array}
$}}$$

 

 There are 220 - (abcd = 0000) = 219  4-digit numbers

 

Hallo Melody, i think add for the first digit 5 the following digits 221 with 3 numbers of ways and you get

216+3 also 219  4-digit numbers

 

Aug 3, 2015
 #1
avatar+14538 
+5

Look here:

 

http://tube.geogebra.org/b/1120471#material/8029

The angles are:

$$\underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{360^\circ}}}{{cos}}^{\!\!\mathtt{-1}}{\left({\mathtt{0.6}}\right)} = {\mathtt{53.130\: \!102\: \!354\: \!156^{\circ}}}$$

 

and   $${\mathtt{360}}{\mathtt{\,-\,}}{\mathtt{53.13}} = {\mathtt{306.87}}$$     [ ° ]

 

Gruß radix !

Aug 3, 2015
 #5
avatar+118723 
0
Aug 3, 2015

0 Online Users