Questions   
Sort: 
Aug 18, 2015
 #3
avatar+23254 
+7

If you subtract successive y-terms (bottom up so that they are all positive):

150 - 50 = 100         300 - 150 = 150         500 - 300 = 200           750 - 500 = 250   1050 - 750 = 300

If these answers were all the same number, your formula would be a linear equation:  y = ax + b, but since they aren't, subtract the answers (again, subtract smaller from larger):

150 - 100 = 50     200 - 150 = 50     250 - 150 = 50     300 - 250 = 50

Since these answers are all the same and since it took two sets of subtractions, the formula will be quadratic:  ax2 + bx + c = y

(1,50)  -->  x = 1, y = 50  -->  a(1)2 + b(1) + c = 50   -->  a + b + c = 50

(2,150) -->  x = 2, y = 150 -->  a(2)2 + b(2) + c = 150   -->  4a + 2b + c = 150

(3,300) -->  x = 3, y = 300 -->  a(3)2 + b(3) + c = 300   -->  9a + 3b + c = 300

Now solve these for a, b, and c:

Combining the first two:  a + b + c = 50

                                       4a + 2b + c = 150

                   Subtracting:  3a + b = 100                (subtract bottom up)

Combining the last two:  4a + 2b + c = 150

                                        9a + 3b + c = 300

                   Subtracting:  5a + b = 150                 (subtract bottom up)

Combining these two answers:

                                     3a + b = 100

                                     5a + b = 150

                  Subtracting:  2a = 50   ===>   a = 25

Substituting back:  5(25) + b = 150   --->   b = 25

and finally, a + b + c = 50  --->   25 + 25 + c = 50   ===>   c = 0

So, the equation is:  ax2 + bx + c = y   ===>   y = 25x2 + 25x

Aug 18, 2015

1 Online Users