Well there will be 1000 cm cubes
Let the side length of the new cube be x cm
The front and back will have $$x^2$$ cubes each
The top and bottom will have a further x(x-2) cubes each
and the sides will have a further (x-2)(x-2) cubes each
So
$$\\2[x^2+x(x-2)+(x-2)^2]\le1000\\\\
2[x^2+x^2-2x+x^2-4x+4]\le1000\\\\
x^2+x^2-2x+x^2-4x+4\le500\\\\
3x^2-6x+4\le500\\\\
3x^2-6x-496\le0\\\\$$
$${\mathtt{3}}{\mathtt{\,\times\,}}{{\mathtt{x}}}^{{\mathtt{2}}}{\mathtt{\,-\,}}{\mathtt{6}}{\mathtt{\,\times\,}}{\mathtt{x}}{\mathtt{\,-\,}}{\mathtt{496}} = {\mathtt{0}} \Rightarrow \left\{ \begin{array}{l}{\mathtt{x}} = {\mathtt{\,-\,}}{\frac{\left({\sqrt{{\mathtt{1\,497}}}}{\mathtt{\,-\,}}{\mathtt{3}}\right)}{{\mathtt{3}}}}\\
{\mathtt{x}} = {\frac{\left({\sqrt{{\mathtt{1\,497}}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{3}}\right)}{{\mathtt{3}}}}\\
\end{array} \right\} \Rightarrow \left\{ \begin{array}{l}{\mathtt{x}} = -{\mathtt{11.897\: \!028\: \!081\: \!435\: \!402\: \!3}}\\
{\mathtt{x}} = {\mathtt{13.897\: \!028\: \!081\: \!435\: \!402\: \!3}}\\
\end{array} \right\}$$
This is a concave up parabola.
It will be < 0 between the two roots.
So the highest integer x value will be 13.
Number of cubes used will be
$$\\f(x)=2[x^2+x(x-2)+(x-2)^2]\\\\
f(13)=2[13^2+13(13-2)+(13-2)^2]\\\\
f(13)=2[169+143+121]\\\\
f(13)=2[169+143+121]=866\\\\
$Left over blocks $=1000-866 =\; 134 \;blocks$$
I think that method is correct