Here's the worked out solution.........
x^2 + 6y = 17 → y = [17 - x^2] / 6
y^2 + 4z = 1 → z = [ 1 - y^2 ] / 4 → z = [ 1 - [(17 - x^2)/6]^2]^2/4
z^2 + 2x = 2 → [ 1 - (1 - [(17 - x^2)/6]^2)]^2 + 2x = 2 (3)
Using (3).....we have
[ 1 - [(17 - x^2)/6]^2)]^2 / 4 + 2x = 2
[ 1 - [ 289 - 34x^2 + x^4]/ 36]^2 /16 + 2x = 2 simplify
[(1/36) (-x^4 + 34x^2 - 289) + 1]^2 / 16 + 2x = 2
[ 1 / 20736] [ (-x^4 + 34x^2 - 289) + 36]^2 + 2x = 2
[ -x^4 + 34x^2 - 253]^2 / 20736 + 2x = 2
[x^8 -68x^6 +1662x^4-17204x^2 + 64009] / 20736 + 2x = 2
[x^8 -68x^6 +1662x^4-17204x^2 + 41472x + 64009] / 20736 = 2
[x^8 -68x^6 +1662x^4-17204x^2 + 41472x + 64009] = 41472
x^8 -68x^6 + 1662x^4 - 17204x^2 + 41472x + 64009 - 41472 = 0
x^8 -68x^6 + 1662x^4 - 17204x^2 + 41472x + 22537 = 0
Kes, this will be too difficult to solve algebraically........we can either find the real solutions by a graph or by using a solver........WolframAlpha gives the real solutions of :
x ≈ -6.42773 and x = -0.458115
So x^2 = either ≈ 41.3157129529 or ≈ 0.209869353225
And x^2 + 6y = 17 ....so........
41.3157129529 + 6y = 17 → y ≈ -4.0526 → y^2 ≈ 16.42356676 .......or......
0.209869353225 + 6y = 17 → y ≈ 2.798 → y^2 ≈ 7.829
And y^2 + 4z = 1 → 16.42356676 + 4z = 1 → z ≈ 3.856 → z^2 ≈ 14.869 .....or......
7.829 + 4z = 1 → z ≈ -1.707 → z^2 ≈ 2.914
So...in one case x^2 + y^2 + z^2 = 41.3157129529 + 16.42356676 + 14.869 = 72.6082797129
OR
x^2 + y^2 + z^2 = 0.209869353225 + 7.829 + 2.914 = 10.952869353225
