Questions   
Sort: 
 #11
avatar+118725 
+10

f(1)=20 , f(n)=3*f(n-1)-60 find the 10th term

 

I have been thinking about this question ://      

I would do it the same as Heureka but I was just thinking about why this sequence is so well known.

 

It is important because it is the same logic that would be used for future value of an ordinary annutiity with an original deposit.

Say you start a  bank account off with P dollars. Then you add M dollars at the end of every month

The interest rate is 100r% per month that is r as a decimal. Each month the amount will grow by a factor of  1+r  which I will call R                              R=1+r

 

 

Beginning of month 1        F0  = P

End of month 1                  F1=   PR+M

End of month 2                  F2 =  R*F1 +M

                                          F2 = R(PR+M)+M

                                          F2 = PR^2+MR+M                                           

End of month 3                 F3 = F2 *R +M                                   so    F(n) = R*F(n-1)+M

                                          F3 = (PR^2+MR+M) *R +M

                                          F3 = PR^3 + MR^2 + MR +M

                                          F3 = PR^3 + M(R^2 + R +1)

--

End of nth month              Fn = PR^n + M(R^(n-1) + R^(n-2)...............+R +1)

                                       

This is a GP        a=1, r=R, n=n

(R^(n-1) + R^(n-2)...............+R +1) 

\(s_n=\frac{1(R^n-1)}{R-1}\\ s_n=\frac{R^n-1}{R-1}\\\)

 

\(\mbox{End of the nth month= }PR^n+\frac{M(R^n-1)}{R-1}\)

 

this is what your money will have accumulated to:

 

--------------------------

Relating this to the given problem - which is not a money problem but it is of the same form as an annuity.

f(1)=20 , f(n)=3*f(n-1)-60 find the 9th term     (It is the 9th because it starts at 1 instead of at 0)

P=20     R=3   M=-60           n=9

 

\(\mbox{End of the nth period= }T_n= PR^n+\frac{M(R^n-1)}{R-1}\\ \mbox{End of the 9th period= }T_{9} =20*3^{9}+\frac{-60(3^9-1)}{3-1}\\ \mbox{End of the 9th period= }T_{9} =20*3^{9}+\frac{-60(3^9-1)}{3-1}\\ \mbox{End of the 9th period= }T_{9} =20*3^{9}-30(3^9-1)\\ \mbox{End of the 9th period= }T_{9} = -196,800\\\)

.
Nov 23, 2015
 #2
avatar+26404 
+20

ABC is a triangle. D, E and F are the respective middles of segments [AB], [AC] and [BC].

A line d passing through A intersects with (DE) in G, a line d' passing through C intersects with (EF) in H.

Under what condition are lines (AG) and (CH) parallel?

You can get to an hypothesis, then prove it, using the Cartesian coordinate system of origin E. Good luck!

Nota Bene: The problem was originally in French, I had to translate it by myself. I apologize if the translation is wrong or if there are mistakes in notations or something. If you cannot do the exercise because of this, say it in the comments, I'll do my best to fix it. Thanks.

 

I. Ths sides of the triangle ABC are: a = (BC), b = (AC) , c = (AB)

 

II.  (DE) \(\parallel\) (BC) and (EF) \(\parallel\) (AB).

Proof:

The angles of the triangle are: A = BAC,  B = CBA, C = ACB

1. Cos-Rule:

Let x = (DE) then: \(\begin{array}{rcll} (1): & \quad x^2 &=& (\frac{b}{2})^2 + (\frac{c}{2})^2 - 2\frac{b}{2}\frac{c}{2}\cdot\cos{(A)} \qquad | \qquad \cdot 4\\ & 4x^2 &=& b^2 +c^2 - 2bc\cdot\cos{(A)} \\ (2): & a^2 &=& b^2 +c^2 - 2bc\cdot\cos{(A)} \\ \hline \text{compare:} & 4x^2 &=& a^2 \\ \text{we find:} & x &=& \frac{a}{2}\\ \text{or} & (DE) &=& \frac{(BC)}{2} \end{array}\)

 

2. Sin-Rule:

Let \(\epsilon\) = angle ADE then: \(\begin{array}{rcll} (1): & \quad \frac{\sin{(\epsilon)} } {\frac{b}{2} } &=& \frac{\sin{(A)} } { \frac{a}{2} } \\ & \quad \frac{\sin{(\epsilon)} } { b } &=& \frac{\sin{(A)} } { a } \\ (2): & \quad \frac{\sin{(B)} } { b } &=& \frac{\sin{(A)} } { a } \\ \hline \text{compare:} & \sin{(\epsilon)} &=& \sin{(B)}\\ \text{we find:} & \epsilon &=& B\\ \end{array}\)

 

so we have (DE) \(\parallel\) (BC)

\(\begin{array}{rcll} \text{permute and we have: } \quad (EF) &=& \frac{(AB)}{2} = \frac{(c)}{2} \\ \text{and angle } CFE &=& B\\ \text{so we have also } \quad \mathbf{(FE) \parallel (AB)} \end{array}\)

 

III.

\(\begin{array}{rcll} \vec{a} &=& \vec{B} - \vec{C}\\ \vec{c} &=& \vec{B} - \vec{A}\\ \vec{GE} = \vec{G} - \vec{E} &=& \lambda \cdot \vec{a} \\ \vec{HE} = \vec{H} - \vec{E} &=& \mu \cdot \vec{c} \\ \vec{AE} = \vec{A} - \vec{E} &=& \frac{ \vec{a} }{2} - \frac{ \vec{c} }{2} \\ \vec{CE} = \vec{C} - \vec{E} &=& \frac{ \vec{c} }{2} - \frac{ \vec{a} }{2} \\ \hline \vec{d} &=& \vec{GE} - \vec{AE}\\ \vec{d'} &=& \vec{HE} - \vec{CE}\\ \hline \vec{d} = \lambda \cdot \vec{a} - \frac{ \vec{a} }{2} + \frac{ \vec{c} }{2} \\ \vec{d'} = \mu \cdot \vec{c} - \frac{ \vec{c} }{2} + \frac{ \vec{a} }{2} \\ \mathbf{If } \quad |\vec{d} \times \vec{d'} | = 0 \quad \text{ then } \quad \vec{d} \parallel \vec{d'}\\ \hline | \vec{d} \times \vec{d'} | &=& 0 \\ |(\lambda \cdot \vec{a} - \frac{ \vec{a} }{2} + \frac{ \vec{c} }{2}) \times (\mu \cdot \vec{c} - \frac{ \vec{c} }{2} + \frac{ \vec{a} }{2} )| &=& 0 \\ \lambda \mu | \vec{a}\times \vec{c} | - \frac{\lambda}{2 } |\vec{a}\times \vec{c} | + \underbrace{\frac{\lambda}{2 } |\vec{a}\times {\vec{a} }| }_{\text{area}=0} \\ - \frac{\mu}{2 } |\vec{a}\times \vec{c} | + \frac{1}{4 } |\vec{a}\times \vec{c} | - \underbrace{\frac{1}{4 } |\vec{a}\times \vec{a}| }_{\text{area}=0}\\ + \underbrace{\frac{\mu}{2 } |\vec{c}\times \vec{c} | }_{\text{area}=0} - \underbrace{\frac{1}{4 } |\vec{c}\times \vec{c} | }_{\text{area}=0} + \frac{1}{4 } |\vec{c}\times \vec{a} | &=& 0 \\ \lambda \mu | \vec{a}\times \vec{c} | - \frac{\lambda}{2 } |\vec{a}\times \vec{c} | - \frac{\mu}{2 } |\vec{a}\times \vec{c} | \\ + \frac{1}{4 } |\vec{a}\times \vec{c} | + \frac{1}{4 } |\vec{c}\times \vec{a} | &=& 0 \\ \lambda \mu | \vec{a}\times \vec{c} | - \frac{\lambda}{2 } |\vec{a}\times \vec{c} | - \frac{\mu}{2 } |\vec{a}\times \vec{c} | \\ + \frac{1}{4 } |\vec{a}\times \vec{c} | - \frac{1}{4 } |\vec{a}\times \vec{c} | &=& 0 \\ \lambda \mu | \vec{a}\times \vec{c} | - \frac{\lambda}{2 } |\vec{a}\times \vec{c} | - \frac{\mu}{2 } |\vec{a}\times \vec{c} | &=& 0 \\ \hline \underbrace{| \vec{a}\times \vec{c} |}_{\ne 0} \underbrace{(\lambda \mu- \frac{\lambda}{2 }- \frac{\mu}{2 } )}_{=0} &=& 0 \\ \mathbf{ \lambda \mu- \frac{\lambda}{2}- \frac{\mu}{2} }&\mathbf{=}& \mathbf{0}\\ \end{array} \)

 

\(\begin{array}{rcll} \boxed{~ \begin{array}{lrcl} & \lambda \mu- \frac{\lambda}{2}- \frac{\mu}{2} & = & 0 \\ & 2\lambda \mu &=& \lambda - \mu \\ \hline & 2\lambda -1 &=& \frac{\lambda}{\mu} \\ & \color{red} \mu & \color{red}=& \color{red}\frac{\lambda}{2\lambda -1} \\ \text{or } & 2\mu -1 &=& \frac{\mu}{\lambda} \\ & \color{red} \lambda & \color{red}=& \color{red}\frac{\mu}{2\mu -1} \\ \text{or } & (2\lambda -1)(2\mu -1) &=& 1 \\ \end{array} ~} \end{array}\)

 

IV. Solution

\(\begin{array}{rcll} \vec{a} &=& \vec{B} - \vec{C}\\ \vec{c} &=& \vec{B} - \vec{A}\\ \vec{GE} = \vec{G} - \vec{E} &=& \lambda \cdot \vec{a} \\ \vec{HE} = \vec{H} - \vec{E} &=& \mu \cdot \vec{c} \\ \hline \boxed{~ \begin{array}{rcll} \vec{GE} = \vec{G} - \vec{E} &=& \lambda \cdot \vec{a} \\ \vec{HE} = \vec{H} - \vec{E} &=& \frac{\lambda}{2\lambda -1} \cdot \vec{c} \\ \vec{GE} = \vec{G} - \vec{E} &=& \lambda \cdot ( \vec{B} - \vec{C} ) \\ \vec{HE} = \vec{H} - \vec{E} &=& \frac{\lambda}{2\lambda -1} \cdot ( \vec{B} - \vec{A} ) \\ d \parallel d' \text{ or } \vec{(GA)} \parallel \vec{(HC)} \end{array} ~} \end{array} \)

 

laugh

Nov 23, 2015
 #37
avatar+118725 
+10

@@ What is Happening?  [Wrap4]   Mon 23/11/15   Sydney, Australia Time 6:50 pm   ♪ ♫

 

Good afternoon/morning,

We had some great answers today from CPhill, geno3141, anonnymous4338 and riddler, jc and other guests.

 Thank you

 

Interest Posts:

If you ask or answer an interesting question, you can private message the address to me (with copy and paste) and I will include it.  Of course only members are able to do this.  I quite likely will not see it if you do not show me.  

 

1) Riddler's riddles.    Geno got one but the other is unanswered. :)   Thanks Geno and Ridler :)

http://web2.0calc.com/questions/riddles-for-ages

 

2) Fun facts continued  Thanks Riddler

http://web2.0calc.com/questions/fun-facts#r3

 

3) Problem simultaneous equations with a challenge question added.    Thanks Geno and guest.

http://web2.0calc.com/questions/in-pta-fundraising-activity-couples-who-came-were-charged-400-however-if-only-one-parent-came-he-was-charged-250-00#r3

 

4) 2 very different answers for a half life question.  Thanks Geno3141 and guest. :D

http://web2.0calc.com/questions/chemistry_8658

 

5) Logistics problem  Thanks CPhill and jc

http://web2.0calc.com/questions/logistic-model-help-thank-you

 

6) Singing crickets and modular arithmetic. 

http://web2.0calc.com/questions/math-problem-sum

 

 

I hope you have all had a great start to your new week  smiley

 

                                                                 ♪ ♫      Melody    ♪ ♫                                                

Lantern thread:

Nov 23, 2015

2 Online Users

avatar