Questions   
Sort: 
 #46
avatar+118725 
+10

@@ What is Happening?  [Wrap4]   Wed 9/12/15   Sydney, Australia Time 11:26 pm   ♪ ♫

 

Hi all,

Answer credits go to CPhill, Alan, Heureka, EinsteinJr, Riddle, DragonSlayer554, James10898, Omi67, Nauseated, GoldenLeaf, Anonymous4338, TijustaGod, and SpawnofAngel.  Thank you.  

There may well be others as well, I am sorry if you got omitted.  The forum is too big and I have been too busy to really know what is going on  sad  If you answer a question and you believe your answer is correct and reasonably well explained then I strongly advise you to give yourself 5 stars.  You can no longer rely on me to give the points to you.  I do not see all posts anymore  sad

 

Technical Issues

IDK, is the picture upload working - it wasn't the last time i tried it. ://

 

How can you post a picture when the picture upload on the forum is not working properly ?

Thanks very much Alan for these instructions.

http://web2.0calc.com/questions/ven-diagram-need-help-for-questions#r3

 

Interest Posts 

If you ask or answer an interesting question, you can private message the address to me (with copy and paste) and I will include it.  Of course only members are able to do this.  I quite likely will not see it if you do not show me.  

 

These interest posts are not a good cross section.  Sorry.

 

1)     Riddle      Thanks DragonSlayer554

       https://web2.0calc.com/questions/riddle-of-the-morning

2)    Altitude and Pressure    Thanks Heureka

       http://web2.0calc.com/questions/logarithmic-equations_1

3)   Trig transformation   Melody

       http://web2.0calc.com/questions/transformation-of-sine-function

4)    Determining the equation of a sine curve.      Melody

       https://web2.0calc.com/questions/find-the-equation-of-a-sine-function-that-has-a-period-of-pi-amplitude-5-a-vertical-shift-of-zero-and-passes-through-pi-6-5-2

5)    What 4 consecutive odd numbers multiply to a square number.    Thanks Melody and Heureka

        http://web2.0calc.com/questions/what-square-is-the-product-of-four-consecutive-odd-integers

6)     Probability   Thanks Nauseated, Alan and CPhill

        http://web2.0calc.com/questions/five-cards-are-drawn-at-random-from-a-pack-of-cards-that-have-been-numbered-consecutively-from-1-to-97-and-thoroughly-shuffled

 

 

                                                                 ♪ ♫      Melody    ♪ ♫                                                

Lantern thread:

Dec 9, 2015
 #1
avatar
0
Dec 9, 2015
 #1
avatar+26404 
+10

Given a triangle with a=11, b=14, and \(\mathbf{\alpha = 15^{\circ}}\), what is (are) the possible length(s) of c?

 

\(\small{ \begin{array}{rcll} a^2 &=& b^2+c^2-2bc\cdot \cos{(\alpha)} \\ c^2-2b\cdot \cos{(\alpha)}\cdot c +b^2-a^2 &=& 0 \\\\ \boxed{~ \begin{array}{rcll} Ac^2+Bc+C = 0 \\ c = {-B \pm \sqrt{B^2-4AC} \over 2A} \end{array} ~}\\\\ c^2-2b\cdot \cos{(\alpha)}\cdot c +b^2-a^2 &=& 0 \qquad A=1 \qquad B = -2b\cdot \cos{(\alpha)} \qquad C = b^2-a^2 \\ c &=& {2b\cdot \cos{(\alpha)} \pm \sqrt{(2b\cdot \cos{(\alpha)})^2-4(b^2-a^2)} \over 2} \\ c &=& b\cdot \cos{(\alpha)} \pm \sqrt{ [ b\cdot \cos{(\alpha)} ]^2-(b^2-a^2)} \\ c &=& b\cdot \cos{(\alpha)} \pm \sqrt{b^2\cdot[ \cos^2{(\alpha)} -1] + a^2 } \\ c &=& b\cdot \cos{(\alpha)} \pm \sqrt{b^2\cdot[ 1-\sin^2{(\alpha)} -1] + a^2 } \\ c &=& b\cdot \cos{(\alpha)} \pm \sqrt{ a^2 - b^2\cdot \sin^2{(\alpha)} } \quad a=11 \quad b=14 \quad \alpha = 15^{\circ}\\ c &=& 14\cdot \cos{(15^{\circ})} \pm \sqrt{ 11^2 - 14^2\cdot \sin^2{(15^{\circ})} } \\ c &=& 14\cdot 0.96592582629 \pm \sqrt{ 107.870489571 } \\ c &=& 13.5229615680 \pm 10.3860719028\\\\ c_1 &=& 13.5229615680 + 10.3860719028\\ c_1 &=& 23.9090334709\\\\ c_2 &=& 13.5229615680 - 10.3860719028\\ c_2 &=& 3.13688966521 \end{array} }\)

 

 

check:

\(\begin{array}{rcll} c_1\cdot c_2 &=& (b-a)(b-a+2a)\\ c_1\cdot c_2 &=& (b-a)(b+a)\\ c_1\cdot c_2 &=& b^2-a^2 \quad a=11 \quad b=14 \\ c_1\cdot c_2 &=& 14^2-11^2 \\ c_1\cdot c_2 &=& 75 \\\\ c_1\cdot c_2 &=& 23.9090334709\cdot 3.13688966521 \\ c_1\cdot c_2 &=& 75\quad \text{ Okay}\\ \end{array}\)

 

laugh

Dec 9, 2015

1 Online Users