Questions   
Sort: 
 #9
avatar+118658 
+5

I know that this has already been answered perfectly well, and I have learned from all those answers,

but I want to put up my version  :)

 

Integrate:

\(\displaystyle\int \dfrac{1}{1+\sin x + \cos x}\text{dx}\)

 

Please use LaTeX or Image to reply. I am not used to something like int(1/(1 + sin x + cos x ))dx 

 

Express in terms of t  where   \(t=tan(\frac{x}{2})\)

 

We are suppose to remember what sin(x) and cos(x) equals in terms of t but I never can so I'll derive it.

 

\(\begin{array}{rl} sin(x)&=2sin(\frac{x}{2})cos(\frac{x}{2}) \qquad \qquad cos(x)&=cos^2(\frac{x}{2})-sin^2(\frac{x}{2})\\ &=2tan(\frac{x}{2})cos^2(\frac{x}{2}) \qquad \qquad &=cos^2(\frac{x}{2})[1-tan^2(\frac{x}{2})]\\ &=\frac{2tan(\frac{x}{2})}{sec^2(\frac{x}{2})} \qquad \qquad &=\frac{[1-tan^2(\frac{x}{2})]}{sec^2(\frac{x}{2})} \\ &=\frac{2tan(\frac{x}{2})}{1+tan^2(\frac{x}{2})} \qquad \qquad &=\frac{1-tan^2(\frac{x}{2})}{1+tan^2(\frac{x}{2})} \\ &=\frac{2t}{1+t^2} \qquad \qquad &=\frac{1-t^2}{1+t^2} \\~\\ \end{array}\)

so

\(\begin{align} 1+sin(x)+cos(x)&=\frac{1+t^2+2t+1-t^2}{1+t^2}\\ &=\frac{1+t^2+2t+1-t^2}{1+t^2}\\ &=\frac{2(t+1)}{1+t^2}\\~\\ \frac{1}{1+sin(x)+cos(x)}&=\frac{1+t^2}{2(t+1)}\\ \end{align}\)

 

 

\(\begin{align} t&=tan(\frac{x}{2})\\ \frac{dt}{dx}&=\frac{1}{2}sec^2(\frac{x}{2})\\ &=\frac{1}{2}\left[1-tan^2(\frac{x}{2})\right]\\ &=\frac{1-t^2}{2}\\ \frac{dx}{dt}&=\frac{2}{1-t^2}\\ dx&=\frac{2}{1-t^2}\;dt \end{align}\)

 

 

\(\begin{align} \displaystyle\int \frac{1}{1+sin(x)+cos(x)}\;dx &=\displaystyle\int \frac{1+t^2}{2(t+1)} \cdot \frac{2}{1+t^2}\;dt\\ &=\displaystyle\int \frac{1}{t+1}\;dt\\~\\ &= ln(1+t)\\ &=ln[1+tan( \frac{x}{2})]+c \end{align}\)

 

Restrictions on the domain.

\(\frac{x}{2} \ne n\pi \qquad n\in Z\\ so\\ x\ne 2\pi n\\ also\\ 1+tan(\frac{x}{2})>0\\ \frac{-\pi}{2}+2\pi n<x<\pi+2\pi n \qquad n\in Z\)

 

 

also

\(\quad ln[1+tan( \frac{x}{2})]+c\\ = ln[\frac{cos( \frac{x}{2})+sin( \frac{x}{2})}{cos( \frac{x}{2})}]+c\\ =ln[cos( \frac{x}{2})+sin( \frac{x}{2})]-ln[cos( \frac{x}{2})]+c\)

 

Here is the graph of the solution is you want to play with it.

https://www.desmos.com/calculator/6sbycp3ee2

 

and here it is just to look at :)    (this is for c=1)

 

I have included two of the asymptotes.     \(x=\pi/2\qquad and \qquad x=\pi\)

 

Jan 7, 2017

2 Online Users

avatar