Questions   
Sort: 
 #3
avatar+26400 
+9

Convert to binary........

convert 3.141592 to base 2 with steps please, if possible.

Thank you for any help.

 

[pre-decimal point position]:

\(\begin{array}{|rcrcrr|} \hline && && & \text{Remainder} \\ \hline 3 &:& 2 &=& \color{blue}{1} & \color{red}{1} \\ \color{blue}{1} &:& 2 &=& 0 & \color{red}{1} \\ \hline \end{array}\)

 

decimals:

\(\begin{array}{|rcrcrr|} \hline && && & \text{Carry} \\ \hline 0.141592 &*& 2 &=& {\color{red}0}.283184 & \color{red}{0} \\ 0.283184 &*& 2 &=& {\color{red}0}.566368 & \color{red}{0} \\ 0.566368 &*& 2 &=& {\color{red}1}.132736 & \color{red}{1} \\ 0.132736 &*& 2 &=& {\color{red}0}.265472 & \color{red}{0} \\ 0.265472 &*& 2 &=& {\color{red}0}.530944 & \color{red}{0} \\ 0.530944 &*& 2 &=& {\color{red}1}.061888 & \color{red}{1} \\ 0.061888 &*& 2 &=& {\color{red}0}.123776 & \color{red}{0} \\ 0.123776 &*& 2 &=& {\color{red}0}.247552 & \color{red}{0} \\ 0.247552 &*& 2 &=& {\color{red}0}.495104 & \color{red}{0} \\ 0.495104 &*& 2 &=& {\color{red}0}.990208 & \color{red}{0} \\ 0.990208 &*& 2 &=& {\color{red}1}.980416 & \color{red}{1} \\ 0.980416 &*& 2 &=& {\color{red}1}.960832 & \color{red}{1} \\ 0.960832 &*& 2 &=& {\color{red}1}.921664 & \color{red}{1} \\ 0.921664 &*& 2 &=& {\color{red}1}.843328 & \color{red}{1} \\ 0.843328 &*& 2 &=& {\color{red}1}.686656 & \color{red}{1} \\ 0.686656 &*& 2 &=& {\color{red}1}.373312 & \color{red}{1} \\ 0.373312 &*& 2 &=& {\color{red}0}.746624 & \color{red}{0} \\ 0.746624 &*& 2 &=& {\color{red}1}.493248 & \color{red}{1} \\ 0.493248 &*& 2 &=& {\color{red}0}.986496 & \color{red}{0} \\ 0.986496 &*& 2 &=& {\color{red}1}.972992 & \color{red}{1} \\ \cdots \\ \hline \end{array}\)

 

\(3.141592_{10} = 11.00100100001111110101\ldots_2\)

 

laugh

Apr 7, 2017
 #2
avatar+26400 
+8

Convert to binary........

convert 3.141592 to base 2 with steps please, if possible.

Thank you for any help.

 

[pre-decimal point position]:

\(\begin{array}{|rcrcrr|} \hline && && & \text{Remainder} \\ \hline 3 &:& 2 &=& 1 & \color{red}{1} \\ 1 &:& 2 &=& 0 & \color{red}{1} \\ \hline \end{array}\)

 

decimals:

\(\begin{array}{|rcrcrr|} \hline && && & \text{Carry} \\ \hline 0.141592 &*& 2 &=& {\color{red}0}.283184 & \color{red}{0} \\ 0.283184 &*& 2 &=& {\color{red}0}.566368 & \color{red}{0} \\ 0.566368 &*& 2 &=& {\color{red}1}.132736 & \color{red}{1} \\ 0.132736 &*& 2 &=& {\color{red}0}.265472 & \color{red}{0} \\ 0.265472 &*& 2 &=& {\color{red}0}.530944 & \color{red}{0} \\ 0.530944 &*& 2 &=& {\color{red}1}.061888 & \color{red}{1} \\ 0.061888 &*& 2 &=& {\color{red}0}.123776 & \color{red}{0} \\ 0.123776 &*& 2 &=& {\color{red}0}.247552 & \color{red}{0} \\ 0.247552 &*& 2 &=& {\color{red}0}.495104 & \color{red}{0} \\ 0.495104 &*& 2 &=& {\color{red}0}.990208 & \color{red}{0} \\ 0.990208 &*& 2 &=& {\color{red}1}.980416 & \color{red}{1} \\ 0.980416 &*& 2 &=& {\color{red}1}.960832 & \color{red}{1} \\ 0.960832 &*& 2 &=& {\color{red}1}.921664 & \color{red}{1} \\ 0.921664 &*& 2 &=& {\color{red}1}.843328 & \color{red}{1} \\ 0.843328 &*& 2 &=& {\color{red}1}.686656 & \color{red}{1} \\ 0.686656 &*& 2 &=& {\color{red}1}.373312 & \color{red}{1} \\ 0.373312 &*& 2 &=& {\color{red}0}.746624 & \color{red}{0} \\ 0.746624 &*& 2 &=& {\color{red}1}.493248 & \color{red}{1} \\ 0.493248 &*& 2 &=& {\color{red}0}.986496 & \color{red}{0} \\ 0.986496 &*& 2 &=& {\color{red}1}.972992 & \color{red}{1} \\ \cdots \\ \hline \end{array}\)

 

\(3.141592_{10} = 11.00100100001111110101\ldots_2\)

 

laugh

Apr 7, 2017
 #1
avatar+312 
+1

Now, I believe you know how bases work-

 

suppose we are writing using base n. That means we have n digits that represent numbers:

 

0, 1, 2, ......n-1

 

for example, if n=2. we have 2 digits- 0 and 1.

 

Lets call the first digit the main digit (for example, the main digit in 11001010110 be 0, in 345 it will be 5 and so on)

 

If the digit d is K places to the left of the main digit, its value will be the base multiplied by itself K times, then multiplied by the digit. if the base is N it means the value will be d*NK. It also means that if the digit is K places to the right of the main digit, its value will be d*N-K=d/(NK)

 

for example, if our base is 10, then the value of the marked digit in 0.007 will be 7*10-3=7/(103).

 

If our base is 2, it means the value of the marked digit in 0.01 will be 1*2-2=1/(22)

 

So, if we want to convert 3.141592 to base 2, we have to use those rules. 3.141592 (base 10)~~11.0011

 

Unfortunately for you, pi is irrational, meaning we cant write it with a finite number of digits (i know you didnt want me to do that but i just had to say that)

 

you wanted me to write 3.141592 in base 2, and im afraid to tell you we cant write this rational number with a finite number of digits either! but we CAN write it as a Repeating decimal. why? because if you dont want a fraction to be a repeating decimal (lets say the fraction is m1/m2) then after reducing the fraction you need all of m2's factors to be factors of the base N as well. It doesnt work with 141592/1000000, but we can write it as a repeating decimal.

 

Can you to that?

Apr 7, 2017
 #3
avatar+4623 
+1
Apr 7, 2017
 #2
avatar+134 
-1
Apr 7, 2017
 #1
avatar+4623 
0
Apr 7, 2017

0 Online Users