Simplify the following:
(1)/(((n^2)/(m^3))^4 ((m^2)/(n^3))^2)
Multiply each exponent in m^2/n^3 by 2:
(1)/((n^2/m^3)^4 (m^(2×2))/((n^3)^2))
2×2 = 4:
(1)/((n^2/m^3)^4 m^4/(n^3)^2)
Multiply exponents. (n^3)^2 = n^(3×2):
(1)/((n^2/m^3)^4 m^4/n^(3×2))
3×2 = 6:
(1)/((n^2/m^3)^4 m^4/n^6)
(n^2/m^3)^(-4) = (m^3/n^2)^4:
((m^3/n^2)^4)/(m^4/n^6)
Multiply each exponent in m^3/n^2 by 4:
((m^(4×3))/((n^2)^4))/(m^4/n^6)
4×3 = 12:
(m^12/(n^2)^4)/(m^4/n^6)
Multiply exponents. (n^2)^4 = n^(2×4):
(m^12/n^(2×4))/(m^4/n^6)
2×4 = 8:
(m^12/n^8)/(m^4/n^6)
Multiply the numerator by the reciprocal of the denominator, (m^12/n^8)/(m^4/n^6) = m^12/n^8×n^6/m^4:
(m^12 n^6)/(n^8 m^4)
Combine powers. (m^12 n^6)/(n^8 m^4) = m^(12 - 4) n^(6 - 8):
m^12 - 4 n^6 - 8
12 - 4 = 8:
m^8 n^(6 - 8)
6 - 8 = -2:
Answer: | m^8 n^-2