Questions   
Sort: 
 #3
avatar
0
May 22, 2017
 #1
avatar+307 
+1
May 22, 2017
 #1
avatar
0
May 22, 2017
 #2
avatar+86 
+2
May 22, 2017
 #1
avatar+26403 
+6

There is a row of Pascal's triangle that has three successive positive entries,"a" "b"  and "c"

such that "b" is double "c" 

and "a" is triple "c"

If this row begins "1,n,"  then find n.

 

Three successive positive entries:

\(\begin{array}{rcll} a&=&\binom{n}{k-1} \\ b&=&\binom{n}{k} \\ c&=&\binom{n}{k+1} \\ \end{array} \)

 

"b" is double "c" and "a" is triple "c"

\(\begin{array}{|rcll|} \hline a &= 3c &=& \binom{n}{k-1} \\ b &= 2c &=& \binom{n}{k} \\ c & &=& \binom{n}{k+1} \\ \hline \end{array} \)

 

\(\begin{array}{|lrcll|} \hline (1) & 2c &=& \binom{n}{k} \quad & | \quad c = \binom{n}{k+1} \\ & 2\cdot \binom{n}{k+1} &=& \binom{n}{k} \quad & | \quad \binom{n}{k+1}= ( \frac{n-k}{k+1} ) \binom{n}{k} \\ & 2\cdot ( \frac{n-k}{k+1} ) \binom{n}{k} &=& \binom{n}{k} \\ & 2\cdot ( \frac{n-k}{k+1} ) &=& 1 \\ & \mathbf{ n-k } & \mathbf{=} & \mathbf{ \frac{k+1}{2} } \\\\ (2) & 3c &=& \binom{n}{k-1} \quad & | \quad c = \binom{n}{k+1} \\ & 3\cdot \binom{n}{k+1} &=& \binom{n}{k-1} \quad & | \quad \binom{n}{k+1}= ( \frac{n-k}{k+1} ) \binom{n}{k} \\ & 3\cdot ( \frac{n-k}{k+1} ) \binom{n}{k} &=& \binom{n}{k-1} \quad & | \quad \binom{n}{k-1}= ( \frac{k}{n-k+1} ) \binom{n}{k} \\ & 3\cdot ( \frac{n-k}{k+1} ) \binom{n}{k} &=& ( \frac{k}{n-k+1} ) \binom{n}{k} \\ & 3\cdot ( \frac{n-k}{k+1} ) &=& \frac{k}{n-k+1} \\ & 3\cdot (n-k)\cdot (n-k+1) &=& k\cdot (k+1) \quad & | \quad \mathbf{ n-k } \mathbf{=} \mathbf{ \frac{k+1}{2} } \\ & 3\cdot ( \frac{k+1}{2} )\cdot ( \frac{k+1}{2} +1) &=& k\cdot (k+1) \\ & 3\cdot ( \frac{k+1}{2} )\cdot ( \frac{k+3}{2} ) &=& k\cdot (k+1) \\ & \frac34\cdot (k+1)\cdot (k+3) &=& k\cdot (k+1) \\ & \frac34 \cdot (k+3) &=& k \\ & \frac34 k + \frac94 &=& k \\ & k-\frac34 k &=& \frac94 \\ & \frac14 k &=& \frac94 \\ & \mathbf{ k } & \mathbf{=} & \mathbf{9} \\\\ & \mathbf{ n-k } & \mathbf{=} & \mathbf{ \frac{k+1}{2} } \\ & n-9 & = & \frac{9+1}{2} \\ & n-9 & = & 5 \\ & \mathbf{ n } & \mathbf{=} & \mathbf{ 14 } \\ \hline \end{array}\)

 

The three successive positive entries are:

\(a=3003 =\binom{14}{8} \\ b=2002 =\binom{14}{9} \\ c=1001 =\binom{14}{10} \\ \)

and n is 14.

 

laugh

May 22, 2017

1 Online Users