Questions   
Sort: 
 #1
avatar+9481 
0
Oct 8, 2017
 #1
avatar+2446 
+1

This is indeed a messy problem. I'll solve for both variables, I guess.

 

1. Solve for a Variable

 

In this case, I will solve for x in the first equation, \(\sqrt{x^2+y^2}=100\)

 

\(\sqrt{x^2+y^2}=100\) The first step is to square both sides so that we eliminate the square root symbol.
\(x^2+y^2=10000\) Subtract \(y^2\) from both sides.
\(x^2=10000-y^2\) Take the square root from both sides to isolate x.
\(x=\sqrt{10000-y^2}\)  
   

 

2. Use Substitution to eliminate the x and solve for y

 

Plug in \(\sqrt{10000-y^2}\) for x into the 2nd equation and solve for y. This is not going to look good...

 

\(\sqrt{\left(x+\frac{4800}{\sqrt{937}}\right)^2+\left(y+\frac{3800}{\sqrt{937}}\right)^2}=299.289496902\) Plug in the value for x.
\(\sqrt{\left(\sqrt{10000-y^2}+\frac{4800}{\sqrt{937}}\right)^2+\left(y+\frac{3800}{\sqrt{937}}\right)^2}=299.289496902\) Square both sides to eliminate the square root.
\(\textcolor{blue}{\left(\sqrt{10000-y^2}+\frac{4800}{\sqrt{937}}\right)^2}+\left(y+\frac{3800}{\sqrt{937}}\right)^2=299.289496902^2\) In both binomials, we must follow the rule that \((a+b)^2=a^2+2ab+b^2\). I'll do the first binomial first, in blue.
\(\left(\sqrt{10000-y^2}+\frac{4800}{\sqrt{937}}\right)^2=\left(\sqrt{10000-y^2}\right)^2+2\sqrt{10000-y^2}*\frac{4800}{\sqrt{937}}+\left(\frac{4800}{\sqrt{937}}\right)^2\) Simplify this. Here we go...
\(10000-y^2+\frac{9600\sqrt{10000-y^2}}{\sqrt{937}}+\frac{23040000}{937}\) Now, let's remember that this equals the bit in blue. Now, let's expand the other part, in normal text.This time, I'll expand it without showing much.
   

 

\(\left(y+\frac{3800}{\sqrt{937}}\right)^2\) Expand this using the same technique as above.
\(y^2+\left(2y*\frac{3800}{\sqrt{937}}\right)+\left(\frac{3800}{\sqrt{937}}\right)^2\) Simplify further.
\(y^2+\frac{7600y}{\sqrt{937}}+\frac{14440000}{937}\)  
   

 

Time to do the simplification process. 

 

\(10000-y^2+\frac{9600\sqrt{10000-y^2}}{\sqrt{937}}+\frac{23040000}{937}+y^2+\frac{7600y}{\sqrt{937}}+\frac{14440000}{937}\) To make this easier to digest, I will rearrange the terms.
\(y^2-y^2+\frac{9600\sqrt{10000-y^2}}{\sqrt{937}}+\frac{7600y}{\sqrt{937}}+10000+\frac{23040000}{937}+\frac{14440000}{937}\) Now, let's do the simplification process.
\(\frac{9600\sqrt{10000-y^2}+7600y}{\sqrt{937}}+50000\) Great! Now that we have simplified as much as possible, let's reinsert this into the equation.
   

 

\(\frac{9600\sqrt{10000-y^2}+7600y}{\sqrt{937}}+50000=299.289496902^2\) We have to get rid of the remaining fraction by multiplying by the square root of 937 on all sides.
\(9600\sqrt{10000-y^2}+7600y+50000\sqrt{937}=299.289496902^2\sqrt{937}\) Subtract \(7600y+50000\sqrt{937}\)
\(9600\sqrt{10000-y^2}=229.289496902^2\sqrt{937}-7600y-50000\sqrt{937})\) Doing some more simplifying...
   

 

 

You know what...

 

This is really boring and tedious...

 

There are 2 ordered pair solutions to this. They are the following:

 

\(x≈68.53740254003346, y≈72.81912147963209\)

 

\(x≈86.60254037943613, y≈49.99999999828134\)

.
 #2
avatar+205 
+2
Oct 8, 2017
 #2
avatar+17 
+3
Oct 8, 2017
 #4
avatar+118690 
+3
Oct 8, 2017
 #7
avatar+118690 
0
Oct 8, 2017

0 Online Users