Questions   
Sort: 
 #1
avatar+130071 
+2

[ t - 2 ] / [ t - 1 ]   =  10 / [ 3-t ]   - 1   + 5 / [ t^2  - 4t + 3]

 

Subtract  10 / [3 - t ]  form both sides   and factor the last denominator

 

[ t - 2 ] / [ t - 1]   - 10  / [ 3 - t ]   =   -1  +  5 / [ (t - 1) (t - 3) ]

 

And we can factor a negative out of   - 10 / [ 3 - t]     so it becomes  + 10 / [ t - 3]

 

[ t - 2 ] / [ t - 1]   + 10  / [ t - 3 ]   =   -1  +  5 / [ (t - 1) (t - 3) ]

 

Subtract   5 / [ (t - 1) (t - 3) ]  from both sides

 

[ t - 2 ] / [ t - 1]   + 10  / [ t - 3] ]   - 5 / [ (t - 1) ( t - 3) ]   = -1

 

Get a common denominator on the left  = [  [t - 1 ] [ t - 3]...so we have

 

 ( [ ( t - 2) ( t - 3) ] + 10 [ t - 1 ]  -  5) / [ (t - 3) ( t - 1) ]    = - 1

 

Simplify the left side

 

(  t^2 - 5t + 6  + 10t - 10  - 5 )  / [ ( t - 1) (t - 3) ]  =  - 1 

 

( t^2 + 5t  - 9 )  /  [ ( t - 3) ( t - 1) ]  =  -1

 

Multiply both sides by  [ ( t - 3) ( t - 1) ] 

 

( t^2 + 5t  - 9 )   =   -1 [ (t - 3) ( t - 1) ]

 

(t^2 + 5t - 9)  = - [ t^2 - 4t +  3 ]

 

(t^2 + 5t - 9 ] =  -t^2 + 4t - 3      rearrange as

 

2t^2 + t  - 6   = 0      factor as

 

(2t  - 3) ( t + 2)  =  0

 

Set each factor to 0 and solve

 

2t - 3  = 0                                                 t   +   2   = 0

 

Add 3 to both sides                                  Subtract 2 from both sides

 

2t  = 3                                                        t  = -2

 

Divide both sides by 2

 

t  = 3 / 2

 

 

So    t  =  -2  , 3/2

 

 

cool cool cool

Nov 10, 2017
 #1
avatar+845 
+2
Nov 10, 2017

2 Online Users