Is this the right expresion?
\(\frac{y^2+2y}{x^2+2xy+y^2}\div\frac{y^2-4}{x+y}\)
First let's factor the numerators and denominators.
\(=\,\frac{y(y+2)}{x^2+xy +xy+y^2}\div \frac{(y+2)(y-2)}{x+y} \\~\\ =\,\frac{y(y+2)}{x(x+y) +y(x+y)}\div \frac{(y+2)(y-2)}{x+y} \\~\\ =\,\frac{y(y+2)}{(x+y)(x+y)}\div \frac{(y+2)(y-2)}{x+y}\)
Now Invert the second fraction and change to multiplication.
\(=\,\frac{y(y+2)}{(x+y)(x+y)}\cdot \frac{x+y}{(y+2)(y-2)} \\~\\ =\,\frac{y(y+2)(x+y)}{(x+y)(x+y)(y+2)(y-2)}\)
Now reduce the fraction as much as possible.
\(=\,\frac{y}{(x+y)(y-2)} \)
.