Loading [MathJax]/jax/output/SVG/jax.js
 
  Questions   
Sort: 
 #5
avatar+390 
+15
Dec 5, 2017
 #4
avatar+1356 
+17
Dec 5, 2017
 #3
avatar+390 
+14
Dec 5, 2017
 #1
avatar+471 
+4
Dec 5, 2017
 #2
avatar+26396 
+3

Triangle $ABC$ is inscribed in equilateral triangle $PQR$, as shown.

If $PC = 3$, $BP = CQ = 2$, and $\angle ACB = 90^\circ$, then compute $AQ$.

 

Let u = BC

Let v = CA

Let w = AB

Let x = AQ

 

Let PQ = PR = RQ = 5

 

Let BR = PR - BP =52=3

Let AR = RQ - AQ =5x

 

Using the Law of Cosines:

u2=BP2+PC22BPPCcos(60)|2cos(60)=212=1u2=BP2+PC2BPPC|BP=2PC=3u2=22+3223u2=22+326

 

Using the Law of Cosines again:

v2=CQ2+AQ22CQAQcos(60)|2cos(60)=212=1v2=CQ2+AQ2CQAQ|CQ=2AQ=xv2=22+x22x

 

Using the Law of Cosines again:

w2=BR2+AR22BRARcos(60)|2cos(60)=212=1w2=BR2+AR2BRAR|BR=3AR=5xw2=32+(5x)23(5x)

 

Using Pythagoras' theorem:

u2+v2=w2(22+326)+(22+x22x)=32+(5x)23(5x)22+326+22+x22x=32+(5x)23(5x)226+22+x22x=(5x)23(5x)2+x22x=(5x)23(5x)2+x22x=2510x+x215+3x22x=2510x15+3x22x=107x5x=8x=85x=1.6

 

AQ is 1.6

 

laugh

Dec 5, 2017

0 Online Users